Решение: Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней Производительность работы первого экскаватора за один день равна: 1/х второго экскаватора 1/(х-10) А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение: 1 : [1/(х)+1/(х-10)]=12 1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12 -здесь мы привели к общему знаменателю 1: [(х-10+х)/(х²-10х)]=12 (х²-10х)/(2х-10)=12 х²-10х=12*(2х-10) х²-10х=24х-120 х²-10х-24х+120+0 х²-34х+120=0 х1,2=(34+-D)/2*1 D=√(34²-4*1*120)=√(1156-480)=√676=26 х1,2=(34+-26)/2 х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован х2=(34-26)/2=4 - не соответствует условию задачи Второй экскаватор вырывает котлован за (х-10) или: 30-10=20 (дней)
ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней
Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
Объяснение:
решение на фото.