это у=синх, а синх+2, будет тоже самое, только график переместится по оси у не 2 единицы вверх. свойства Область определения функции — множество R всех действительных чисел.
Множество значений функции — отрезок [1; 3], т.е. синус функция — ограниченная.
Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно точко (0,2).
Функция периодическая с наименьшим положительным периодом 2π:
sin(x+2π·k) +2 = sin x + 2, где k ∈ Z для всех х ∈ R. sin x +2 не равна 0 при x любое
sin x+2 > 0 (положительная) для всех x любое sin x +2< 0 (отрицательная) не бывает отрицательной.
Функция возрастает от 1 до 3 на промежутках: Функция убывает от 1 до 3 на промежутках: Наибольшее значение функции sin x+2 = 3 в точках: х= пи/2+2π·k где k ∈ Z Наименьшее значение функции sin x +2 = 1 в точках: х=3пи/2+2π·k где k ∈ Z
Сначала разберёмся с выражением в скобках, а конкретно, приведём к общему знаменателю дроби: 1 1 a - 6b - --- = 6b a 6ab
Т.к. происходит деление на получившуюся дробь, то мы её переворачиваем и вместо деления ставим знак умножения: a^2 - 36b^2 6ab a^2 - 36b^2 (a - 6b)*(a + 6b) * = = = a + 6b 6ab a - 6b a - 6b a - 6b
Получившуюся в числителе разность квадратов, мы разложили на множители, после чего сократили.
Теперь можно подставлять конкретные значения: a + 6b = 5 2/17 + 6 * (5 2/17) = (5 2/17) * (1 + 6) = (5 2/17) * 7
свойства
Область определения функции — множество R всех действительных чисел.
Множество значений функции — отрезок [1; 3], т.е. синус функция — ограниченная.
Функция нечетная: sin(−x)=−sin x для всех х ∈ R.
График функции симметричен относительно точко (0,2).
Функция периодическая с наименьшим положительным периодом 2π:
sin(x+2π·k) +2 = sin x + 2, где k ∈ Z для всех х ∈ R.
sin x +2 не равна 0 при x любое
sin x+2 > 0 (положительная) для всех x любое
sin x +2< 0 (отрицательная) не бывает отрицательной.
Функция возрастает от 1 до 3 на промежутках:
Функция убывает от 1 до 3 на промежутках:
Наибольшее значение функции sin x+2 = 3 в точках: х= пи/2+2π·k где k ∈ Z
Наименьшее значение функции sin x +2 = 1 в точках: х=3пи/2+2π·k где k ∈ Z