М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Onik2002
Onik2002
23.11.2022 05:48 •  Алгебра

Решите уравнение 2x^3-10x^2+3x-15=0

👇
Ответ:
2x^{3}-10x^{2}+3х-15=0
4,4(17 оценок)
Ответ:
leon88
leon88
23.11.2022
2x^3-10x^2+3x-15=0
2x^2(x-5)+3(x-5)=0
(x-5)(2x^2+3)=0
x-5=0
x1=5
2x^2+3=0
2x^2=-3
квадрат не может равняться отрицательному числу.
ответ: x=5.
4,7(52 оценок)
Открыть все ответы
Ответ:
Тема, как я понимаю, "Квадратные уравнения"?

Как решать квадратные уравнения?
Смотри. Уравнение: ах^2+bx+c=0 называется квадратным.
Например, х^2-х-6=0
Решается оно через дискриминант. Точное определение дискриминанта, к сожалению, дать не смогу. Находится он по формуле: b^2-4ac.
Найдём дискриминант нашего уравнения:
Д=(-1)^2-4*1*(-6)=1+24=25.
А теперь нам предстоит найти корни уравнения. В квадратном уравнении, как правило, их 2. Реже - 1 корень, или вовсе корней нет. Всё зависит от дискриминанта.
Если он больше нуля - то 2 корня, и формула: х_1,2=(-b(+-)√Д) / 2а.
Если дискриминант равен 0, то 1 корень, и формула: х=-b/2a.
А если дискриминант меньше нуля - то корней нет.
Найдём корни нашего уравнения: Их у нас два, так как дискриминант больше нуля:
х_1,2=(1+-√25)/2=(1+-5)/2.
Это формула двух корней. А теперь найдём каждый корень по отдельности:
х_1=(1+5)/2=6/2=3;
х_2=(1-5)/2=-4/2=-2.
Корнями будут являться числа 3 и -2.
Итак, запишем теперь ответ: х_1=3; х_2=-2.

Всё просто! Со временем ты будешь щелкать эти уравнения, как семечки! ;)

А решение твоих уравнений находится во вложении, только там кратко, не запутайся)
Решите . не понял тему.. 1)х(2)-0,6х+0,08=0 2)7=0,4у+0,2у(2) 3)х(2)-1,6х-0,36=0 4)z(2)-2z+2,91=0 5)0
4,5(44 оценок)
Ответ:
Mished
Mished
23.11.2022
Иррациональное число - это число, не являющееся рациональным, то есть такое, которое нельзя представить в виде отношения двух целых чисел. 

Если Вы помните, рациональные числа были введены потому, что во множестве целых чисел не всегда можно выполнить деление. Например, существует целое число, которое является результатом деления 8 на 2, но не существует целого числа, которое является результатом деления 8 на 3. Поэтому были введены рациональные числа, то есть дроби вида p/q. Целые числа стали их подмножеством, когда q=1. 

Для выполнимости деления рациональных чисел достаточно, но вот для извлечения корней - нет. Например, не существует рационального числа, которое было бы результатом извлечения квадратного корня из двух. (Это доказывается в Вашем учебнике, я уверен. Если не поняли, напишите, объясню.) Поэтому производят дальнейшее расширение системы чисел. К рациональным числам добавляют ещё и иррациональные, и все они вместе образуют множество действительных чисел. 

Если не вдаваться в подробности, то рациональные числа можно отличить от иррациональных следующим образом. Рациональные числа, если их записать десятичной дробью, обязательно дадут конечную или бесконечную периодическую дробь. Это тоже легко доказать. Иррациональные же числа, записанные в виде десятичной дроби, оказываются представленными бесконечной НЕпериодической дробью. 

Типичным примером иррационального числа является корень квадратный из двух. Пи - тоже иррациональное число, причем в определенном смысле более сложное, чем корень из двух, потому что Пи нельзя представить в виде корня из рационального числа. Но это уже немножко высший пилотаж
4,4(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ