Установлено, что какой бы ни была окружность, отношение ее длины к диаметру является постоянным числом. Это число принято обозначать буквой π ( читается - "пи" ). Обозначим длину окружности буквой , а ее диаметр буквой d и запишем формулу
Число π приблизительно равно 3.14 Более точное его значение π = 3,1415926535897932
Исходя из формулы выше, выведем, чему равна окружность, если известен диаметр ( d )
Если известен радиус ( r ) , то формула длины окружности будет выглядеть так:
Площадь круга вычисляется по формуле где: S — площадь круга r — радиус
Оба графика функций - параболы и у обоих ветви этих парабол направлены вверх, значит, в обоих случаях наименьшее значение функций достигается в вершине параболы. Найдем вершины каждой из них. из формулы ах²+bx+c B(x; y) x(B) = -b / 2a
1) у = х² - 2х + 7 х(В) = 2/2 = 1 у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6 В(1; 6) - вершина => у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5 х(В) = 7/2 = 3,5 у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25 В(3,5; 20,25) - вершина => у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5
(1+у)*у=12
у^2+y-12=0
D=1+4*12=49 ,больше 0 - 2 корня
у1= (-1+7)/2=3
у2=(-1-7)/2=-4
х1=1+3=4
х2=1-4=-3
ответ: (4;3) и (-3;-4)