1) (x2-9)(x+4)<0
(x2-9)(x+4)=0
x2-9=0 x+4=0
x2=9 x=-4
x=3,-3
x(-бесконечность;-4)u(-3;3)
2)y2-xy=33 y2-11y-y2=33 -11y=33 y=-3
x-y=11 x=11+y x=11+y x=11-3=8
(8;-3)
3)a1=16, d=20-16=4
an=16+4(n-1)
а)16+4n-4=44
4n+12=44
4n=32
n=8 т.к. 8 целое число, значит подходит
б)16+4n-4=52
4n=40
n=10 подходит
в)4n+12=68
4n=54
n=54\4 нецелое число не подходит
г)4n+12=64
4n=52
n=13 подходит
ответ: подходят варианты а, б и г
4)bn=b1*q^n-1
bn=-128*(-1\2)^n-1
посмотрев на формулу данной прогрессии, мы видим, что её нечетные члены отрицательны и их значения убывают, а четные члены положительны, их значения также убывают(у нечетных членов степень при q четная, а у четных - нечетная), то есть четные члены больше нечетных, отсюда следует, что не является верным неравенство г)
5)a)(n+2)!(n+1)>(n+1)!(n+2)
т.к. n!+2!=(n+2)!
n!+1!=(n+1)!, n!=n!, а 1!=1, 2!=1*2=2
1) a) 4+12x+9x2
4+12x+18
22+12x
2(11+6x)
б) 25-40х+16х2
25-40х+32
57-40х
г) -56а+49а*2+16
-56а+98а+16
42а+16
2(21а+8)
2) a) (y-1)(y+1) б) p^2-9 г) (3x-2)(3x+2) д) (3x)^2-2^2 е) a^2-3^2
y^2-1 (3x)^2-2^2 9x^2-4 a^2-9
в) 4^2-(5y^2) 9x^2-4
16-25y^2
4) a) a3-b3 б) 27a3+8b3
3(a-b) 81a+24b
3(27a+8b)