на смену x и y функции y= 2x²-2x -5 вставляем координаты:
a(-2; 17)
17=2*(-2)²-2*(-2)-5
17=2*4+4-5=8+8-5=11
17≠11 не принадлежит
в(-1; 5)
5=2*(-1)^2-2*(-1)-5
5=2+2-5=-1
5≠-1 не принадлежит
с(1; -1);
-1=2*(-1)²-2*(-1)-5
-1=2+2-5=-1
-1=-1 принадлежит
м(2; 10);
10=2*(2)²-2*10-5
10=2*4-20-5
10=8-25= -17
11≠-17 не принадлежит
к(1.1/2; 3)
3=2*(5/2)²-2*(5/2)-5
3=2*25/4-10/2-5
3=12,5-5-5
3=12,5-10
3≠2,5 не принадлежит
р(1/4; 94,5)?
94,5=2*(1/4)²-2*(1/4)-5
94,5=2*1/16-2/4-5
94,5=1/8-1/2-5
94,5≠-47/16 не принадлежит
4sin²x + sin2x = 3 ⇔ 4sin²x + 2sinx*cosx = 3(sin²x+cos²x) = 0 ⇔
sin²x + 2sinx*cosx - 3cos²x =0 ⇔ || : cos²x ≠ 0 ||
* * * однородное уравнение второго порядка Au²+Bu*v +Cv² * * *
tg²x + 2tgx - 3 =0 ( квадратное уравнение относительно tgx )
tgx₁ = 1 ; tgx₂ = - 3
x₁ = π/4 +πn , n ∈ ℤ ;
x₂ =arctg(-3) + πk ,k ∈ ℤ || arctg(-3) = -arctg(3) ||
ответ: π/4 +πn , n ∈ ℤ ; - arctg(3) + πk ,k ∈ ℤ .
4sin²x + sin2x = 3 ⇔ 4(1 - cos2x) /2 + sin2x = 3⇔ 1sin2x -2cos2x = 1 ⇔
√5 ( (1 /√5)*sin2x - (2/√5) *cos2x ) = 1 * * * √ (1²+2²) = √5 * * *
* * * 1 /√5 = cosφ ; 2/√5 =sinφ ; 2 = tgφ * * *
√5( sin2x*cosφ - cos2x *sinφ ) = 1 ⇔ √5( sin(2x - φ) ) = 1
sin(2x - φ) = 1/√5 ⇒ 2x - φ = (-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
x = 0,5φ + 0,5(-1)ⁿarcsin( 1/√5) + πn , n∈ ℤ
* * * φ = arccos(1 /√5) ; φ= arcsin(2/√5) ; φ= arctg2 * * *
два последовательные числа 44 и 45,в произведении дают 1980