ответ:
ответ: 2 км/ч.
объяснение:
решение:
пусть скорость плота х км/ч,учитываем,что скорость плота равна скорости течения реки,тогда по течению скорость лодки равна (8 + х) км/ч, а против течения (8 - х) км/ч.
составим уравнение:
15/(8+x)+ 6/(8-x)=5/x;
(120-15х+48+6х)/(64+х²)=5/x;
(168-9x)/(64+x²)-5/x=0;
(168x-9x²-320+5x²)/(64х+х³)=0;
168x-9x²-320+5x²=0;
-4x²+168x-320=0;
сокращаем на -4:
x²-42x+80=0;
d=b²-4×a×c
d=(-42²)-4×1×80 = 1764-320=1444
d> 0, 2 корня
х₁=42+√1444/2×1 =42+38/2=80/2=40 (км/ч)---не подходит(так как плот не может плыть быстрее лодки, значит х=40 не является решением);
х₂=42-√1444/2×1=42-38/2=4/2=2 -(км/ч)---скорость течения реки;
ответ: 2 км/ч.
просто подряд подставлять целые
при имеем корни
Первые два в промежуток не попадают, третий - попадает.
при имеем корни
,
первый корень в промежуток не попадает, другие два - попадают.
Если подставлять , то увидим, что полученные в итоге корни уже не будут вписываться в границы отрезка.
универсальный, но не очень удобный): оценить и проверить, при каких целых неравенство
имеет решение. Для этого все серии корней по отдельности подставляем вместо
:
Очевидно, что целых , удовлетворяющих последнему неравенству, не существует. Т.е. ни один из корней этой серии промежутку не принадлежит.
Последнему неравенству удовлетворяет только одно целое -
. Корень находим при подстановке значения
в соответствующую серию.
То же можно проделать с третьей серией и убедиться, что неравенство удовлетворяют только 2 значения и
. Их также подставляем в соответствующую серию и находим корни.