Уравнения в условии не написано, там задана ф-ия!
Имеется видимо в виду уравнение:
2ax +|x² - 8x + 7|= 0
Или:
|x² - 8x + 7| = -2ax
Проанализируем:
Левая часть заведомо неотрицательна. Значит при x>0, a должно быть отрицательным, а при x<0 а должно быть положительным. Так как в задаче необходимо найти максимально возможное значение а, выбираем случай, когда x<0, a>0
При x<0 выражение под знаком модуля заведомо положительное. Поэтому можно значок модуля убрать!
x² + (2a-8)x + 7 = 0
Находим дискриминант и приравняем его к 0:
D = (2a-8)²-28 = 0
4a² - 32a + 36 = 0
a² - 8a + 9 = 0
По теореме Виета имеем два корня:
а₁ = 9; а₂ = -1
Выбираем положительный: а = 9
ответ: при а = 9.
a = 563/51
Объяснение:
|9x + 7a - 3| = |4x + 3a + 4|
Здесь не нужна никакая разность квадратов.
Возможно всего два варианта:
1) 9x + 7a - 3 = -4x - 3a - 4
13x + 10a + 1 = 0
x1 = (-10a - 1)/13
2) 9x + 7a - 3 = 4x + 3a + 4
5x + 4a - 7 = 0
x2 = (-4a + 7)/5
Нам надо, чтобы эти корни были разными. Найдем, при каком а они одинаковы.
(-10a - 1)/13 = (-4a + 7)/5
5(-10a - 1) = 13(-4a + 7)
-50a - 5 = -52a + 91
-50a + 52a = 91 + 5
2a = 96
a = 48
Значит, а не должно быть равно 48.
И нам надо, чтобы среднее арифметическое этих корней было -8.
(x1 + x2)/2 = -8
x1 + x2 = -16
(-10a - 1)/13 + (-4a + 7)/5 = -16
5(-10a - 1) + 13(-4a + 7) = -16*13*5
-50a - 5 - 52a + 91 = -1040
-102a = -1040 + 5 - 91 = -1126
a = -1126/(-102) = 1126/102 = 563/51
Оно не равно 48, значит, это решение.