М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anton297
anton297
04.08.2022 19:44 •  Алгебра

Найдите гипотенузу прямоугольного треугольнока если его катеты равны 25см и 60см

👇
Ответ:
pirozhkovanastya
pirozhkovanastya
04.08.2022
По теореме Пифагора. Сумма кв катетов равна кв гипотенузы.

25^2+60^2= 625+3600=4225

Корень 4225=65
4,5(58 оценок)
Ответ:
Діанагрeк
Діанагрeк
04.08.2022
Гипотенуза равна 25 в квадрате + 60в квадрате и все это под корнем равно 65
4,5(72 оценок)
Открыть все ответы
Ответ:
Light111111
Light111111
04.08.2022

2x^{2006}+3x^{2008} + 4x^{2010} + 5x^{2012} + 6x^{2014} + 7x^{2016} + 8x^{2018} + 9x^{2020} = 44x

Заметим, что при x=0 левая и правая часть уравнения обращается в 0. Значит, число 0 является корнем этого уравнения.

\boxed{x_1=0}

Предположим, что x\neq 0. Тогда, мы можем разделить обе части равенства на x. Получим:

2x^{2005}+3x^{2007} + 4x^{2009} + 5x^{2011} + 6x^{2013} + 7x^{2015} + 8x^{2017} + 9x^{2019} = 44

Рассмотрим левую часть.

Вспомним, что функция вида y=x^{2n+1},\ n\in\mathbb{N} является возрастающей на всей области определения, то есть на множестве действительных чисел. Тогда и функция y=kx^{2n+1},\ k0 является возрастающей. Сумма возрастающих функций также является возрастающей.

Применительно к данному уравнению можно записать: функции x^{2005}, x^{2007}, ..., x^{2019} возрастают, тогда и функции 2x^{2005}, 3^{2007}, ..., 9x^{2019} также возрастают, а значит возрастает и их сумма.

Таким образом, функция y=2x^{2005}+3x^{2007} + 4x^{2009} + 5x^{2011} + 6x^{2013} + 7x^{2015} + 8x^{2017} + 9x^{2019} возрастает. Это означает, что каждое свое значение она принимает только в одной точке.

Следовательно, уравнение 2x^{2005}+3x^{2007} + 4x^{2009} + 5x^{2011} + 6x^{2013} + 7x^{2015} + 8x^{2017} + 9x^{2019} = 44 может иметь не более одного решения.

Решение уравнения легко подбирается: x=1. Действительно, сумма коэффициентов в левой части уравнения равна 44:

2+3+4+5+6+7+8+9= 44

\Rightarrow \boxed{x_2=1}

В силу сказанного выше, других корней у уравнения нет.

ответ: 0; 1

4,5(81 оценок)
Ответ:
Mary17ice
Mary17ice
04.08.2022
1) 2 целых 1\2*(2\15-3 целых 5\6)+1\4 = 5/2*(2/15 - 23/6) +1/4 = 5/2*(18/90 - 345/90) +1/4 = 5/2*327/90 +1/4 = 327/36 + 1/4 = 327/36+9/36 = 336/36 = 9 целых 12/36 = 9 целых 1/3

2) -1 целая 1\7*(4\5+19\20)*(6 целых 5\6+4 целых 2\3) = -8/7*(16/20+19/20)*(41/6+14/3) = -8/7*35/20*(41/6+28/6) = -10/5*69/6 = -2*69/6 = -69/3 = -23

3) (6 целых 3\8-2целых 3\4)*(-4)+7\18*9 = (51/8-11/4)*(-4)+7/2 = (51/8-22/8)*(-4)+7/2 = 29/8*(-4)+7/2 = -29/2+7/2 = -22/2 =  -11

4) 9 целых 1\6:(4 целых 1\3-8)+24*3\8 = 55/6:(13/3-24/3)+9 = 55/6:(-11/3)+9 = 55/6*(-3/11)+9 = -5/2+9 = 6,5
4,8(94 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ