Скорость теплохода в стоячей воде равна 32,5 км/ч.
Объяснение:
Дано:
S₁ = 4 км против течения
S₂ = 33 км по течению
v = 6,5 км/ч -- скорость течения
T = 1 ч -- общее время
Найти: V -- скорость теплохода в стоячей воде
(V – v) -- скорость теплохода при движении против течения, поэтому на путь против течения теплоход затратил S₁ / (V – v) времени.
(V + v) -- скорость теплохода при движении по течению, поэтому на путь по течению теплоход затратил S₂ / (V + v) времени.
Общее время T равно сумме времени, которое теплоход шел по течению и против течения:
T = S₁ / (V – v) + S₂ / (V + v)
T(V – v)(V + v) = S₁(V + v) + S₂(V – v)
TV² – Tv² = (S₁ + S₂)V + (S₁ – S₂)v
TV² – (S₁ + S₂)V – Tv² – (S₁ – S₂)v = 0
Подставим числовые значения:
V² – (4 + 33)V – 6,5² – (4 – 33)·6,5 = 0
V² – 37V + 146,25 = 0
D = 37² – 4·146,25 = 784 = 28²
V₁ = (37 – 28)/2 = 9/2 = 4,5 км/ч -- не подходит, т.к. при такой скорости теплоход не смог бы двигаться против течения реки
V₂ = (37 + 28)/2 = 32,5 км/ч
1). Сначала путём перебора найдём один из корней уравнения. Дело в том, что кубические уравнения всегда имеют по крайней мере один действительный корень, причем целый корень кубического уравнения с целыми коэффициентами является делителем свободного члена d. Коэффициенты этих уравнений обычно подобраны так, что искомый корень лежит среди небольших целых чисел, таких как: 0, ± 1, ± 2, ± 3. Поэтому будем искать корень среди этих чисел и проверять его путём подстановки в уравнение. Вероятность успеха при таком подходе очень высока. Предположим, что этот корень x1 . 2). Вторая стадия решения – это деление многочлена ax 3+ bx 2+ cx+ d на двучлен x – x1. Согласно теореме Безу ( «Деление многочлена на линейный двучлен») это деление без остатка возможно, и мы получим в результате многочлен второй степени, который надо приравнять к нулю. Решая полученное квадратное уравнение, мы найдём (или нет!) оставшиеся два корня.
Уравнение: x³ – 2x² + 3x - 18 = 0 .
Р е ш е н и е . Ищем первый корень перебором чисел: 0, ± 1, ± 2, ± 3 и подстановкой в уравнение.
х 0 1 -1 2 -2 3 -3 4
у -18 -16 -24 -12 -40 0 -72 26
В результате находим, что 3 является корнем. Тогда делим левую часть этого уравнения на двучлен x – 3,
x³ – 2x² + 3x - 18 | x - 3
x³ - 3x² x² + x + 6
x² + 3x - 18
x² - 3x
6x - 18
6x - 18
0
и получаем: x² + x + 6 Теперь, решая квадратное уравнение: x² + x + 6 = 0, ищем другие корни:
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=1^2-4*1*6=1-4*6=1-24=-23;
Дискриминант меньше 0, уравнение не имеет корней.
ответ: уравнение x³ – 2x² + 3x - 18 = 0 имеет один корень х = 3.