В решении.
Объяснение:
Решить уравнение:
1) х² - 6х + 8 = 0
D=b²-4ac =36 - 32 = 4 √D=2
х₁=(-b-√D)/2a
х₁=(6-2)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(6+2)/2
х₂=8/2
х₂=4;
2) х² + 4х - 12 = 0
D=b²-4ac =16 + 48 = 64 √D=8
х₁=(-b-√D)/2a
х₁=(-4-8)/2
х₁= -12/2
х₁= -6;
х₂=(-b+√D)/2a
х₂=-4+8)/2
х₂=4/2
х₂=2.
3) х² + х + 2 = 0
D=b²-4ac = 1 - 8 = -7
D < 0
Уравнение не имеет действительных корней.
4) 12х² - 7х + 1 = 0
D=b²-4ac = 49 - 48 = 1 √D=1
х₁=(-b-√D)/2a
х₁=(7-1)/24
х₁=6/24
х₁=1/4
х₂=(-b+√D)/2a
х₂=(7+1)/24
х₂=8/24
х₂=1/3;
5) 2х² - 3х + 7 = 0
D=b²-4ac = 9 - 56 = -47
D < 0
Уравнение не имеет действительных корней.
6) 7х² - 8х + 1 = 0
D=b²-4ac = 64 - 28 = 36 √D=6
х₁=(-b-√D)/2a
х₁=(8-6)/14
х₁=2/14
х₁=1/7;
х₂=(-b+√D)/2a
х₂=(8+6)/14
х₂=14/14
х₂=1.
2. Все квадратные трёхчлены, имеющие корни, можно разложить на множители.
3. х² - 6х + 8 = (х - 2)(х - 4);
х² + 4х - 12 = (х + 6)(х - 2);
12х² - 7х + 1 = 12(х - 1/4)(х - 1/3);
7х² - 8х + 1 = 7(х - 1/7)(х - 1).
х расстояние между А и В.
х/(2*80) = х/160 ч время потраченное 1 автомобилем на первую половину пути
х/(2*120) = х/240 ч время потраченное 1 автомобилем на вторую половину пути
х/100 ч время потраченное 2 автомобилем на путь
По условию известно, что второй автомобиль, затратил на движение на 6 минут = 6/60 = 1/10 ч меньше первого.
Составим уравнение:
х/160 + х/240 - х/100 = 1/10 (умножим обе части уравнения на 10)
х/16 + х/24 - х/10 = 1 (приведем к общему знаменателю = 240)
(15х + 10х - 24х)/240 = 1
х = 240
ответ. 240 км расстояние между А и В.
Получаем, что двойка возведённая в степень заканчивается на 2, 4, 8, 6, а затем опять на 2, 4, 8 и 6 и так повторяется бесконечно.Т.е. мы выявили закономерность этих четвёрок чисел.
1998 на 4 не делится, зато на 4 делится 1996. Значит, 2^1996 заканчивается на 6, 2^1997 на 2, а 2^1998 на 4.
Используя эту же закономерность решим следующий пример:
80 делится на 4, значит 2^80 заканчивается на 6, 2^81 заканчивается на 2; а 2*3=6
Т.е. результат оканчивается на 6