М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
supereleo2018
supereleo2018
06.08.2022 02:45 •  Алгебра

Решить эти уравнения! 2sin²x+sinx=0 cos²x-2cosx=0 3sin²x-5sinx-2=0 6cos²x+7cosx-3=0

👇
Ответ:
IrynadiV
IrynadiV
06.08.2022
2sin²x+sinx=0
x ∈ {2*пи*k, 2*пи*k-5*пи/6, 2*пи*k-пи/6, 2*пи*k+пи}, k ∈ Z
cos²x-2cosx=0
 x ∈ {2*пи*k-пи/2, 2*пи*k+пи/2}, k ∈ Z; 
 x ∈ {2*%pi*k-1167/3434}, k ∈ Z;  x = (956884*%pi*k-630088*%i+751535)/478442;x = (197005462099694977024*%pi*k+1367*%i-275980585165263994880)/98502731049847488512;x = (956884*%pi*k+630088*%i+751535)/478442; k ∈ Z
6cos²x+7cosx-3=0
 x ∈ {2*%pi*k-asin(2^(3/2)/3),2*%pi*k+asin(2^(3/2)/3)}, k ∈ Z;  x = 2*%pi*k-%i*log(3-sqrt(5))+%i*log(2)+%pi;x = 2*%pi*k-%i*log(sqrt(5)+3)+%i*log(2)+%pi; k ∈ Z
4,7(79 оценок)
Открыть все ответы
Ответ:
ванга13
ванга13
06.08.2022

Объяснение:

1) Приведения обеих частей уравнения к одному основанию.  

2) Разложение на множители.  

3) Введение новой переменной.  

4) Логарифмирование обеих частей (о нем разговор позже).  

5) Искусственные приемы.  

Из предложенных уравнений выбрать те, которые соответствуют обозначенным решения (устно):  

1) 5х + 1 = 125 2) 43 – 2х = 22(х - 1)  

3) 2х + 2х + 1 = 12 4) 5х – 2 – 5х – 1 + 5х = 21  

5) 2 * 9х – 3х + 1 – 9 = 0 6) 25х – 26 * 5х + 25 = 0  

(далее предложить эти уравнения для домашней работы).  

II. Решение показательных уравнений (работа в группах).  

В зависимости от состава групп уровень сложности уравнений нарастает. Каждая группа решает по 3 уравнения, потом представляет свое решение (отчитывается о проделанной работе).  

Две слабые группы работают с листами самопроверки, на которых предложен ход решения заданий. Остальным группам предложить карточки с ответами, которые они должны получить.  

I, II группы (слабые)  

1. 32х + 1 = 92х  

2. 7х + 2 – 7х = 336  

3. 2 * 22х – 3 * 2х – 2 = 0  

Дополнительное уравнение: 9х – 3х – 6 = 0  

III группа (средние)  

1. 2х2 – 6х + 0,5 = 1__  

16√2  

2. 4х – 1 + 4х + 4х + 1 = 84  

3. 34√х – 4 * 32√х + 3 = 0  

IV, V группы (сильные)  

1. 4 (√(3х2 – 2х)) + 1 + 2 = 9 *2√(3х2 – 2х)  

2. 3 * 16х + 2 * 81х = 5 * 36х  

3. 52х – 1 + 22х = 52х – 22х + 2  

III. Искусственный прием решения показательных уравнений (разобрать у доски).  

1) (4 + √15)х + (4 - √15)х = 8  

Числа 4 + √15 и 4 - √15 являются сопряженными.  

Действительно (4 + √15)(4 - √15) = 16 – 15 = 1.  

Поэтому 4 - √15 = 1  

4 + √15  

Введем новую переменную (4 + √15)х = t > 0  

Получим: t + 1/t = 8  

t2 – 8t + 1 = 0  

t1 = 4 + √15; t2 = 4 - √15  

(4 + √15)х = 4 + √15; (4 + √15)х = 4 - √15  

x = 1 (4 + √15)х = 1

4 + √15  

(4 + √15)х = (4 + √15)-1  

x = -1  

2) Пробуют по аналогии решить самостоятельно (на обороте доски – решение для проверки).  

(2 + √3)х + (2 - √3)х = 4  

IV. Решение систем показательных уравнений.  

1. Метод приведения к одному основанию.  

1) 82х + 1 = 32 * 24у – 1

{  

5 * 5х-у = √252у + 1

2) 3х * 9у = 3

{

2у - х = 1

2х 64  

2. Метод введения новых переменных.  

1) х + 5у + 2 = 9 5 у+2 = t

{

2х – 5у + 3 = 11

2) 3 * 7х – 3у = 12 7x = a

{

7х * 3у = 15 3y = b

Итог урока: Обобщить различные решения показательных уравнений и систем уравнений.  

Домашнее задание (дифференцированное, выборка из сборников тестов подготовки к ЕНТ).  

«-» 1) 5х + 1 = 125  

2) 43 – 2х = 22(х - 1)  

3) 2х + 2х +1 = 12  

4) 5х – 2 – 5х – 1 + 5х = 21  

5) 2 * 9х – 3х + 1 - 9 =0  

6) 25х – 26 * 5х + 25 = 0  

«+» 1) 2х + 2 - 2х + 3 – 2х+ 4 = 5х + 1 – 5х + 2  

2) (√(6 – х)) (5х2 – 7,2х + 3,4 - 25) = 0  

3) 2 * 25х – 5 * 10х + 2 * 4х = 0  

4) 5(sinx)2 – 25cosx = 0  

5) 2 * 4х + 3 * 5у = 11  

{  

5 * 4х + 4 *5у = 24  

6) 27х = 9у  

{  

81х : 3у = 243  

4,5(34 оценок)
Ответ:
bosiy01
bosiy01
06.08.2022
Воспользуемся равенством

tg α – tg β = tg (α – β) (1 + tg α tg β).

Получаем:

tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.

С первым понятно, что делать. Второе:

tg 2x tg 4x = –2,

tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.

Это равенство невозможно.

Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
4,8(19 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ