1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:
A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.
2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:
A(n, n) = n!/(n - n)! = n!/0! = n!
3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:
A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!
ответ. Количество трехзначных чисел: 210
Объяснение:
1. Количество трехзначных чисел, составленных из трех различных цифр из множества цифр 1, 2, 3, 4, 5, 6 и 7, равно количеству размещений без повторения 7 элементов по 3 позициям:
A(7, 3) = 7!/(7 - 3)! = 7!/4! = 7 * 6 * 5 = 210.
2. В общей формуле A(n, m) = n!/(n - m)!, отношение факториалов называется убывающим факториалом. В частном случае, при n = m получим число перестановок n элементов:
A(n, n) = n!/(n - n)! = n!/0! = n!
3. Аналогичный результат получим для размещений n элементов по (n - 1) позициям:
A(n, n - 1) = n!/(n - n + 1)! = n!/1! = n!
ответ. Количество трехзначных чисел: 210
Объяснение:
ху=2 | *2 2xy = 4
х^2 + y^2 =5 x^2 +y^2 = 5 Сложим эти два уравнения. Получим: x^2 +2xy + y^2= 9 или (x + y)^2=9
а) x + y = 3 или х+у = -3
х = 3-у x = - y - 3
ху = 2 xy = 2
у(3-у) = 2 y(-y-3)=2
3у -у^2 = 2 -y^2-3y = 2
y^2 -3y +2 = 0 y^2 +3y +2=0
y1= 2, y2 = 1 y1 = -2, y2 = -1
x1= 3-y=1 x1 = -y -3= 2 -3 = -1
x2=3-y=2 x2 = -y -3 = 1 - 3 = -2
ответ:(1;2),(2;1),(-1;-2),(-2;-1)