1
 x>0,y>0
 {x²+y²=5
 {log(2)x+log(2)y=1⇒log(2)xy=1⇒xy=2⇒2xy=4
 прибавим
 x²+y²+2xy=9
 (x+y)²=9
 a)x+y=-3
 x=-3-y
 -3y-y²=2
 y²+3y+2=0
 y1+y2=-3 U y1*y2=2
 y1=-2 не удов усл
 у2=-1 не удов усл
 б)x+y=3
 x=3-y
 3y-y²=2
 y²-3y+2=0
 y1+y2=3 U y1*y2=1
 y1=1⇒x1=2
 y2=2⇒x2=1
 (2;1);(1;2)
 2
 x>0,y>0
 {x²-y²=12
 log(2)x-log(2)y1⇒log(2)(x/y)=1⇒x/y=2⇒x=2y
 4y²-y²=12
 3y²=12
 y²=4
 y1=-2 не удов усл
 y2=2⇒x=4
 (4;2)
 3
 x>0,y>0
 {x²+y²=25
 lgx+lgy=lg12⇒xy=12⇒2xy=24
 x²+y²+2xy=49
 (x+y)²=49
 a)x+y=-7
 x=-y-7
 -y²-7y=12
 y²+7y+12=0
 y1+y2=-7 U y1*y2=12
 y1=-3 не удов усл
 y2=-4 не удов усл
 б)x+y=7
 x=7-y
 7y-y²=12
 y²-7y+12=0
 y1+y2=7 U y1*y2=12
 y1=3⇒x1=4
 y2=4⇒x2=3
 (4;3);(3;4)
 4
 x>0  y>0
 {log(0,5)xy=-1⇒xy=2
 {x=3+2y
 3y+2y²-2=0
 D=9+16=25
 y1=(-3-5)/4=-2 не удов усл
 у2=(-3+5)/4=0,5⇒х=4
 (4;0,5)
Если я правильно понял задание то:
Составим векторы c1 и c2 для этого вместо а и b подставим значения координат векторов приведенных в задании и руководствуясь правилами умножения и сложения векторов получим
 
Получаем Необходимым и достаточным условие коллинеарности двух векторов является равенство нулю их векторного произведения
векторное произведение [a,b] для произвольных векторов а=(а1,а2,а3) и b=(b1,b2,b3) вычисляется по формуле
[a,b]={a2*b3-a3*b2; a3*b1-a1*b3; a1*b2-b1*a2}
Вычисляя по этой формуле векторное произведение c1 и с2 получаем:
[c1,c2]={-169; 39; -572} он не равен нулевому вектору, значит вектора не коллинеарны Векторы будут коллинеарны тогда и только тогда, когда существует такая константа m, что с1=m*c2
чтобы выяснить ее существование рассмотрим соотношение соответсвующих координат векторов c1 и с2
 
 
 
Получаем что:
 
Значит такой константы m не существуют, векторы не коллинеарны