М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
милена8963977
милена8963977
15.01.2020 20:56 •  Алгебра

Какой переменной обозначается аргумент

👇
Ответ:
Du13
Du13
15.01.2020
Ось y это аргумент, а ось x функция.
4,8(1 оценок)
Открыть все ответы
Ответ:
sunriseliva
sunriseliva
15.01.2020

(-∞ ;-3) => функция выпукла;

(-3; +∞) => функция вогнута;

(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;

(-6; 0) <=> f'(x) < 0 => функция убывает;

(0; +∞) <=> f'(x) > 0 => функция возрастает ;

Объяснение:

1. Находим интервалы возрастания и убывания. Первая производная.  

f'(x) = 3x2+18x  

или  

f'(x)=3x(x+6)  

Находим нули функции. Для этого приравниваем производную к нулю  

x(x+6) = 0  

Откуда:  

x1 = 0  

x2 = -6

(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;

(-6; 0) <=> f'(x) < 0 => функция убывает;

(0; +∞) <=> f'(x) > 0 => функция возрастает ;

В окрестности точки x = -6 производная функции меняет знак с (+) на (-). Следовательно, точка x = -6 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.  

2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.  

f''(x) = 6x+18  

Находим корни уравнения. Для этого полученную функцию приравняем к нулю.  

6x+18 = 0  

Откуда точки перегиба:  

x1 = -3

(-∞ ;-3) => функция выпукла;

(-3; +∞) => функция вогнута;

4,5(83 оценок)
Ответ:
Тотошка33
Тотошка33
15.01.2020

№1 (а)

ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">

№1 (б)

№2 (а)

-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">

№2(б)

\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">

ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">

4,5(82 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ