4% выразим десятичной дробью: 4%=4/100 = 0,04 Пусть неизвестное число равно х, тогда по условию задачи 3 < 0,04x < 10 3:0,04 < x < 10:0,04 75< x < 250 Получаем, множество чисел удовлетворяющих нашему неравенству х∈(75;250) Любое из данных чисел может служить ответом в данной задаче. Пример: 76, 101, ..., 249
Известно, что через 60 часов после выхода, турист оказался ровно посередине между Майкопом и всадником. Тот путь, что впереди, он преодолел совместно с всадником за 15 часов. Найдем во сколько раз скорость туриста меньше скорости всадника Пусть скорость туриста х км/ч, а скорость всадника у км/ч, тогда (х + у) км/ч - скорость сближения. S₁ = S₂ 60х = 15(х + у) 60х = 15х + 15у 60х - 15х = 15у 45х = 15у 3х = у у/х = 3 (раза) - во столько раз скорость туриста меньше скорости всадника.
Во сколько раз меньше скорость, во столько же раз больше время, затраченное на один и тот же путь. До момента встречи и турист, и всадник провели в пути по: 60 + 15 = 75 (ч). На путь пройденный всадником, турист затратит в 3 раза больше времени: 75 * 3 = 225 (ч). Всего на весь путь у туриста уйдет: 75 + 225 = 300 (ч). ответ: 300 часов.
Известно, что через 60 часов после выхода, турист оказался ровно посередине между Майкопом и всадником. Тот путь, что впереди, он преодолел совместно с всадником за 15 часов. Найдем во сколько раз скорость туриста меньше скорости всадника Пусть скорость туриста х км/ч, а скорость всадника у км/ч, тогда (х + у) км/ч - скорость сближения. S₁ = S₂ 60х = 15(х + у) 60х = 15х + 15у 60х - 15х = 15у 45х = 15у 3х = у у/х = 3 (раза) - во столько раз скорость туриста меньше скорости всадника.
Во сколько раз меньше скорость, во столько же раз больше время, затраченное на один и тот же путь. До момента встречи и турист, и всадник провели в пути по: 60 + 15 = 75 (ч). На путь пройденный всадником, турист затратит в 3 раза больше времени: 75 * 3 = 225 (ч). Всего на весь путь у туриста уйдет: 75 + 225 = 300 (ч). ответ: 300 часов.
Пусть неизвестное число равно х, тогда по условию задачи
3 < 0,04x < 10
3:0,04 < x < 10:0,04
75< x < 250
Получаем, множество чисел удовлетворяющих нашему неравенству
х∈(75;250)
Любое из данных чисел может служить ответом в данной задаче.
Пример: 76, 101, ..., 249