Решение системы уравнения v=3; u=2.
Объяснение:
Решить систему уравнений:
2u-v=1
3u+2v=12 методом сложения
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе нужно первое уравнение умножить на 2:
4u-2v=2
3u+2v=12
Складываем уравнения:
4u+3u-2v+2v=2+12
7u=14
u=2
Теперь подставляем значение u в любое из двух уравнений системы и вычисляем v:
2u-v=1
-v=1-2u
v=2u-1
v=2*2-1
v=3
Решение системы уравнения v=3; u=2.
Применим формулу сокращённого умножения:
a² - b² = (a - b)·(a + b).
1) 9·x²-4·y²-3·x+2·y = (3·x)²-(2·y)²-(3·x-2·y) = (3·x-2·y)·(3·x+2·y) - (3·x-2·y) =
= (3·x-2·y)·(3·x+2·y-1);
2) 81 - (3-8·y)² = 9² - (3-8·y)² = (9-(3-8·y))·(9+(3-8·y)) = (9-3+8·y)·(9+3-8·y) =
= (6+8·y)·(12-8·y) = 2·(3+4·y)·4·(3-2·y) = 8·(3+4·y)·(3-2·y);
3) 36-(y+1)² = 6²-(y+1)² = (6-(y+1))·(6+(y+1)) = (6-y-1)·(6+y+1) = (5-y)·(7+y);
4) (4-5·x)²-64 = (4-5·x)²-8² = (4-5·x-8)·(4-5·x+8) = (-4-5·x)·(12-5·x) =
= -(4+5·x)·(12-5·x) = (4+5·x)·(5·x-12).
y+xy=4-3x
xy+3x=4-y
x(y+3)=4-y
x=(4-y)/(y+3)
y=(4-x)/(x+3)