1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
A(2 ; 4) 4=2^2 точка А принадлежит B(3 ;6) 6<3^2 точка B не принадлежит C(4 ; 8) 8<4^2 точка C не принадлежит D(-3 ; 9) 9= (-3)^2 точка D принадлежит R(0,5 ; 0,25) 0,25=0,5^2 точка R принадлежит S(1,2 ; 2,4) 2,4>1,2^2 точка S не принадлежит E(1,5 ; 3) 3>1,5^2 точка Е не принадлежит F(-2,5 ; 6,25) 6,25= (-2,5)^2 точка F принадлежит K(1\2 ; 1\4) 1/4=1/2^2 точка K принадлежит P(2\3 ; 4\9) 4/9=2/3^2 точка P принадлежит L(-5\7 ; 25\49) 25/49= (-5/7)^2 точка L принадлежит M(-11\12 ; -121\144) -121/144< (-11/22)^2 точка M не принадлежит