1) Номер не может начинаться с 0.
Значит, на 1 месте любая из 6 цифр, кроме 0 (6 вариантов).
На 2 месте любая из 6 оставшихся, в том числе и 0 (6 вариантов).
На 3 месте любая из 5, потом любая из 4, и, наконец, любая из 3.
Всего 6*6*5*4*3 = 2160 вариантов.
2) На 1 и последнем местах цифры 1 и 9.
Либо 1 _ _ _ 9, либо 9 _ _ _ 1.
В каждом случае 5*4*3 = 60 вариантов. Всего 120 вариантов.
3) Цифры 5 и 7 стоят рядом, и они есть обязательно. Варианты:
57 _ _ _; _ 57 _ _; _ _ 57 _; _ _ _ 57; 75 _ _ _; _ 75 _ _; _ _ 75 _; _ _ _ 75.
Всего 8*5*4*3 = 40*12 = 480 вариантов.
8. Сочетания.
Водители:
C(2,8) = 8*7/2 = 56/2 = 28.
Но у нас чётко обозначено: один рулевой, второй штурман.
Поэтому умножаем на 2 и получаем 56.
Механики:
C(3, 12) = 12*11*10/(1*2*3) = 2*11*10 = 220.
Всего команд 56*220 = 12320
9. Тоже сочетания
С(5, 18) = 18*17*16*15*14/(1*2*3*4*5) = 3*17*4*3*14 = 51*12*14 = 8568 вариантов.
Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Д=b²-4ac=25-24=1
x1=-3
x2=-2
х²+5х+6=(x+3)([+2)
т.к. ф-ла разложения а(х-х1)(1-х2)