Количество игр: 2
:
Выигрыш (В) - 3 очка
Ничья (Н) - 1 очко
Проигрыш (П) - 0 очков
P(Н) = 0,1
Так как общая вероятность равна 1 или 100%, то:
P(В+П) = 1 - 0,1 = 0,9
По условию Р(В) = Р(П), тогда:
Р(В) = P(В+П) /2 = 0,9 / 2 = 0, 45
Р(П) = P(В+П) /2 = 0,9 / 2 = 0, 45
Команде не удасться выйти в следующий круг соревнований при следующих событиях:
1 игра - проигрыш, 2 игра - выигрыш1 игра - выигрыш, 2 игра - проигрыш1 игра - проигрыш, 2 игра - проигрыш1 игра - ничья, 2 игра - ничья1 игра - ничья, 2 игра - проигрыш1 игра - проигрыш, 2 игра - ничьяР(1) = Р(П) * Р(В) = 0,45 * 0,45 = 0,2025
Р(2) = Р(В) * Р(П) = 0,45 * 0,45 = 0,2025
Р(3) = Р(П) * Р(П) = 0,45 * 0,45 = 0,2025
Р(4) = Р(Н) * Р(Н) = 0,1 * 0,1 = 0,01
Р(5) = Р(Н) * Р(П) = 0,1 * 0,45 = 0,045
Р(6) = Р(П) * Р(Н) = 0,45 * 0,1 = 0,045
Вероятность того, что команде не удастся выйти в следующий круг соревнований:
Р = Р(1) + Р(2) + Р(3) + Р(4) + Р(5) + Р(6) = 0,2025 + 0,2025 + 0,2025 + 0,01 + 0,045 + 0,045 = 0,7075 = 0,71
Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так