y = -6·x
Объяснение:
Пусть линейные функции, то есть прямые заданы уравнениями y₁=k₁·x+b₁ и y₂=k₂·x+b₂. Прямые параллельны тогда и только тогда, когда k₁=k₂ и b₁≠b₂. Если k₁=k₂ и b₁=b₂, то прямые совпадают.
В силу этого, уравнение прямой, параллельной графику функции y=-6·x+10 имеет вид: y=-6·x+b. Так как прямая проходит через начало координат О(0; 0), то подставляя эти значения определяем b:
0=-6·0+b или b=0.
Тогда уравнение прямой, параллельной графику функции y=-6x+10 и проходящей через начало координат имеет вид: y=-6·x.
Объяснение:
Решить уравнение f (x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется
ответ: цена уменьшилась на 14%.