Если первый говорит, правду, то он противоречит сам себе. Значит, он лжет, то есть, число честных людей от 1 до 7 (сам он врет, минус один честный человек) . Второй говорит: "Количество честных 1 или 0". Если он прав, то автоматически правыми становятся и остальные, так как выражение "не более 1", и попадает и в "не более 2", "не более 3" и т. д.. . Но, в этом случае количество честных станет равным 7, что будет противоречить утверждению второго. Значит он врет. Итак, у нас уже два вруна. Идем дальше. Третий говорит: "Честных 0, 1 или 2". Если он прав, значит будут правы 4, 5, 6, 7, 8, и снова количество честных превысит. Врет. Четвертый говорит: честных людей 0, 1, 2 или 3. Раз он прав, значит правы 5, 6, 7, 8 - итого пятеро.Бред!Так-с, ну, тогда может быть пятый прав? Честных 0, 1, 2, 3 или 4? Тогда правы он, 6, 7 и 8. Все сходится. ответ: 1, 2, 3, 4 - вруны, 5, 6, 7, 8 - честные люди!
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
=[m(m+3)(m-3)-m(m-4)(m+4)]/(m-1)(m+4)(m-3)=
=[m(m²-9)-m(m²-16)]/(m-1)(m+4)(m-3)=
=m(m²-9-m²+16)/(m-1)(m+4)(m-3)=7m/(m-1)(m+4)(m-3)
2)7m/(m-1)(m+4)(m-3) : m/(m+4)(m-3)=
=7m/(m-1)(m+4)(m-3)*(m+4)(m-3)/m=7/(m-1)