М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
2ewgv423t
2ewgv423t
23.03.2022 17:04 •  Алгебра

Укажите неравенство, которое не имеет решений : 1) x в квадрате -70< 0 2)x в квадрате -70> 0 3)x в квадрате +70< 0 4)x в квадрате +70> 0

👇
Ответ:
JONNYDAPP
JONNYDAPP
23.03.2022
1) x^2<70 - имеет решения
2) x^2>70 - имеет решения
3) x^2<-70 - не имеет решений, т.к. sqrt(-70) не возможен
4) x^2>-70 - имеет решения. 
4,4(44 оценок)
Открыть все ответы
Ответ:

Примем за 1 - объем цистерны

Пусть t цис./ч - производительность "медленного" насоса.

Тогда 3t цис./ч - производительность "быстрого" насоса.

(t+3t) цис./ч - производительность системы при совместной работе этих двух насосов.

(t+3t)\cdot \frac{9}{4} - объем работы системы из двух насосов за 2ч 15мин.

Получим уравнение: (t+3t)\cdot \frac{9}{4}=1

9t = 1

t=\frac{1}{9}

Значит, \frac{1}{9} - цис./ч - производительность "медленного" насоса.

Тогда 3t=3\cdot \frac{1}{9}=\frac{1}{3} - цис./ч - производительность "быстрого" насоса.

Следовательно, 1:\frac{1}{3} =3 ч - потребуется "быстрому" насосу на заполнение цистерны.

ответ: 3 ч.


Цистерна наполняется керосином за 2ч 15мин двумя насосами работающих вместе. за сколько времени цист
4,8(30 оценок)
Ответ:
нина568
нина568
23.03.2022

Во слишком много - ответы тоже краткие.

Объяснение:

1,1  f(-6) = 1/3*36 +12 = 24 - ответ.

1.2 f(2) = 1/3*4 - 2*2 = - 2 2/3 - ответ

2. Не допускается деление на 0.

Дано: y =x²-1*x-6 - квадратное уравнение.

Вычисляем дискриминант - D.

D = b² - 4*a*c = (-1)² - 4*(1)*(-6) = 25 - дискриминант. √D = 5.

Вычисляем корни уравнения.

x₁ = (-b+√D)/(2*a) = (1+5)/(2*1) = 6/2 = 3 - первый корень

x₂ = (-b-√D)/(2*a) = (1-5)/(2*1) = -4/2 = -2 - второй корень

3 и -2 - корни уравнения - исключить из ООФ.

D(f) = R\{-2;3} = (-∞;-2)∪(-2;3)∪(3;+∞) - ответ

3,1

Дано: y = x²-4*x+3 - квадратное уравнение.

D = b² - 4*a*c = (-4)² - 4*(1)*(3) = 4 - дискриминант. √D = 2.

Вычисляем корни уравнения.

x₁ = (-b+√D)/(2*a) = (4+2)/(2*1) = 6/2 = 3 - первый корень

x₂ = (-b-√D)/(2*a) = (4-2)/(2*1) = 2/2 = 1 - второй корень

3 и 1 - нули функции.

Минимум посередине между нулями = (1+3)/2 = 2 = x.

Fmin(2) = -1

Вершина параболы в точке А(2;-1), ветви вверх.

1) E(f) = [-1;+∞) - область значений.

2) Убывает: х = (-∞;2)

3) Положительна при Х=(-∞;1)∪(3;+∞) - ответ

4) Графики на рисунке в приложении.

5) Разрывы при делении на 0 в знаменателе.

х² ≠ 16 и х ≠ ± 4.

D(f) = R\{-4;4} = (-∞;-4)∪(-4;4)∪(4;+∞) - ответ.

4,7(49 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ