Еще одна популярная задача теории вероятностей (наравне с задачей о подбрасывании монет) - задача о подбрасывании игральных костей.
Обычно задача звучит так: бросается одна или несколько игральных костей (обычно 2, реже 3). Необходимо найти вероятность того, что число очков равно 4, или сумма очков равна 10, или произведение числа очков делится на 2, или числа очков отличаются на 3 и так далее.
Основной метод решения подобных задач - использование формулы классической вероятности, который мы и разберем на примерах ниже.
Ознакомившись с методами решения, вы сможете скачать супер-полезный Excel-файл для расчета вероятности при бросании 2 игральных костей (с таблицами и примерами).
Объяснение:
если не по теме то не баньте
а) 2 sin 27° · cos 9° = 2 · 0,5 (sin (27° + 9°) + sin (27° - 9°)) = sin 36° + sin 18°
д) cos(x + 1) · cos(x - 1) = 0,5 (cos (х + 1 + х - 1) + cos (x + 1 - x + 1)) =
= 0.5 cos 2x + 0.5 cos 2
б) -2sin 25° · sin15° = -2 · 0.5 (cos (25° - 15°) - cos (25° + 15°)) = cos 40° - cos 10°
e) 2 sin(α + β) · cos(α - β) = 2 · 0.5 (sin (α + β + α - β) + sin (α + β - α + β)) =
= sin 2α + sin 2β
в) 2 sin α · cos 3α = 2 · 0,5 (sin (α + 3α) + sin (α - 3α)) = sin 4α - sin 2α
ж) sin (y + φ) · sin (y - φ) = 0.5 (cos (y + φ - y + φ) - cos ( y + φ + y - φ)) =
= 0.5 cos 2φ - 0.5 cos 2y
г) 2 cos 2α · cos α = 2 · 0,5 · (cos (2α + α) + cos (2α - α)) = cos 3α + cos α
з) sin (2x + 3) · sin (x - 3); = 0,5 ·(cos (2x + 3 - x + 3) - cos (2x + 3 + x - 3)) =
= 0.5 cos (x + 6) - 0.5 cos 3x
4х-4х-6х=-6+6+16
-6х=16
х=16:(-6)
х=-16/6=-2 2/3