М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
АлинаЛог
АлинаЛог
18.04.2020 14:58 •  Алгебра

Подскажите, как решить уравнение: х четвертых плюс х третьих равняется 14.

👇
Ответ:
AkaboS123
AkaboS123
18.04.2020
Х/2+х/3=14         (3х+2х)/6=14        5х/6=14         5х=84        х=84/5=16,8
4,7(50 оценок)
Открыть все ответы
Ответ:
Nurik1990
Nurik1990
18.04.2020

Сначала решаем соотв. однородное уравнение, запишем его характеристическое уравнение

\lambda^2-6\lambda+9=0λ

2

−6λ+9=0

имеем случай кратных действительных корней, значит общее решение однородного уравнения

y(x)=C_1*e^{3x}+C_2*x*e^{3x}y(x)=C

1

∗e

3x

+C

2

∗x∗e

3x

Далее применим метод вариации. Тогда

\begin{gathered} \left( < br / > \begin{array}{cc} < br / > e^{3 x} & e^{3 x} x \\ < br / > 3 e^{3 x} & 3 x e^{3 x}+e^{3 x} \\ < br / > \end{array} < br / > \right) * \left( < br / > \begin{array}{c} < br / > C_1'(x) \\ < br / > C_2'(x) \\ < br / > \end{array} < br / > \right)=\left( < br / > \begin{array}{c} < br / > 0 \\ < br / > 9 x^2-12 x+2 \\ < br / > \end{array} < br / > \right) \end{gathered}

<br/>

<br/>e

3x

<br/>3e

3x

<br/>

e

3x

x

3xe

3x

+e

3x

<br/>

<br/>

<br/>C

1

(x)

<br/>C

2

(x)

<br/>

<br/>

=

<br/>

<br/>0

<br/>9x

2

−12x+2

<br/>

<br/>

Откуда получим

C_1'(x)=-e^{-3x}*x*(9x^2-12x+2), < br / > C_2'(x)=e^{-3x}*(9x^2-12x+2)C

1

(x)=−e

−3x

∗x∗(9x

2

−12x+2),<br/>C

2

(x)=e

−3x

∗(9x

2

−12x+2)

Интегрированием находим

C_1(x)=-e^{-3 x}(x^2 - 3 x^3)+A, C_2(x)=e^{-3 x} (2 x - 3 x^2)+BC

1

(x)=−e

−3x

(x

2

−3x

3

)+A,C

2

(x)=e

−3x

(2x−3x

2

)+B

Следовательно общее решение уравнения запишется как (переобозначим константы A и B )

y(x)=(-e^{-3 x}(x^2 - 3 x^3)+C_1)*e^{3x}+(e^{-3 x} (2 x - 3 x^2)+C_2)*x*e^{3x}y(x)=(−e

−3x

(x

2

−3x

3

)+C

1

)∗e

3x

+(e

−3x

(2x−3x

2

)+C

2

)∗x∗e

3x

или

y(x)=C_1*e^{3x}+x*C_2*e^{3x}+x^2y(x)=C

1

∗e

3x

+x∗C

2

∗e

3x

+x

2

Соотв. постоянные для нашей задачи Коши находятся из системы

\left \{ {{y(0)=0} \atop {y'(0)=3}} \right.{

y

(0)=3

y(0)=0

Откуда

\left \{ {{C_1=0} \atop {C_2=3}} \right.{

C

2

=3

C

1

=0

4,6(71 оценок)
Ответ:
BooWim
BooWim
18.04.2020

34

Объяснение:

пусть первое число 2n

а второе 2n+2

2n(2n+2)≤300

4n²+4n-300≤0 разделим на 4

n²+n-75≤0

решим методом интервалов

n²+n-75=0

Найдем дискриминант квадратного уравнения:

D = b² - 4ac = 1 - 4·1·(-75) = 1 + 300 = 301

Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:

x₁=   (-1 - √301)/ 2  ≈ -9.1747

x₂ =  ( -1 + √301)/ 2  ≈ 8.1747

по свойству квадратичной функции т.к. старший коэффициент квадратного уравнения равен 1 и 1>0 ветки направлены вверх

тогда решением неравенства будет область между корнями

(x₁)(x₂)>

   +                             -                      +

n²+n-75≤0 при х∈[x₁;x₂]

так как нам требуется максимально возможная сумму последовательных четных чисел то выбираем наибольшее положительное четное число из интервала [x₁;x₂] что приближенно равно [-9.1 ;8,1]

это число n=8

тогда 2n=2*8=16 первое число

2n+2=16+2=18  второе число

16*18=288≤300  

16+18=34  это максимально возможная сумма последовательных четных чисел, произведение которых не превышает 300

4,6(22 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ