М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Irisha1986
Irisha1986
05.01.2020 05:33 •  Алгебра

Если сможете хоть с чем-нибудь, 1. выражения: а) (6x-5xy) - (4x+xy) б) 3 ac^3(5c^2-a) 2.решите уравнение: (6x-16+x^2)-x(x-4)=24 3. вынесете общий множитель за скобки: а)5y-9x^2y б) 5am^4+10am^7

👇
Ответ:
kharina0309
kharina0309
05.01.2020
Если сможете хоть с чем-нибудь, 1. выражения: а) (6x-5xy) - (4x+xy) б) 3 ac^3(5c^2-a) 2.решите уравн
4,5(73 оценок)
Открыть все ответы
Ответ:
Tolapula
Tolapula
05.01.2020

В Китае, как ты знаешь, и сам император и все его подданные — китайцы. Дело было давно, но потому-то и стоит о нём послушать, пока оно не забудется совсем! В целом мире не нашлось бы дворца лучше императорского; он весь был из драгоценного фарфора, зато такой хрупкий, что страшно было до него дотронуться. В саду росли чудеснейшие цветы; к самым лучшим из них были привязаны серебряные колокольчики; звон их должен был обращать на цветы внимание каждого прохожего. Вот как тонко было придумано! Сад тянулся далеко-далеко, так далеко, что и сам садовник не знал, где он кончается. Из сада можно было попасть прямо в густой лес; в чаще его таились глубокие озёра, и доходил он до самого синего моря. Корабли проплывали под нависшими над водой вершинами деревьев, и в ветвях их жил соловей, который пел так чудесно, что его заслушивался, забывая о своём неводе, даже бедный, удручённый заботами рыбак. «Господи, как хорошо!» — вырывалось наконец у рыбака, но потом бедняк опять принимался за своё дело и забывал о соловье, на следующую ночь снова заслушивался его и снова повторял то же самое: «Господи, как хорошо!»не

4,5(49 оценок)
Ответ:
Кирилл6901
Кирилл6901
05.01.2020

На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты ...", но принцип решения от этого не меняется, вот увидите.

найти вероятность, что при бросании монеты

Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.

Объяснение:

4,8(22 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ