1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
яка ймовірність того, що кинутий гральний кубик впаде догори гранню з трьома очками ? з шістьма очками?
какова вероятность того, что брошен игральный кубик упадет вверх гранью с тремя очками ? с шестью очками? Решение: На игральном кубике всего одна грань с тремя очками. Вероятность того что выпадет 3 очка после одного броска по определению вероятности равна
Р = m/n = 1/6 где m=1- количество благоприятных исходов(количество граней с числом 3) n - количество всех исходов (количество всех граней кубика)
Вероятность того что выпадет 6 очков после одного броска по определению вероятности равна
Р = m/n = 1/6 где m=1- количество благоприятных исходов(количество граней с числом 6) n - количество всех исходов (количество всех граней кубика)
ответ 1/6
На гральному кубику всього одна грань з трьома очками. Імовірність того що випаде 3 очки після одного кидка по визначенню ймовірності дорівнює Р = m / n = 1/6
де m = 1 кількість сприятливих результатів (кількість граней з числом 3)n - кількість всіх результатів (кількість всіх граней кубика)
Імовірність того що випаде 6 очок після одного кидка по визначенню ймовірності дорівнює Р = m / n = 1/6
де m = 1 кількість сприятливих результатів (кількість граней з числом 6) n - кількість всіх результатів (кількість всіх граней кубика) відповідь 1/6
5x(x²-25)=0
5x(x-5)(x+5)=0
5x=0 или x-5=0 или x+5=0
x=0 x=5 x=-5