Функция арккотангенса даёт значения в интервал причём во второй четверти – отрицателен, поэтому от отрицательных аргументов функция арккотангенса даёт значения в интервал
в данном методе нужно сложить левые части обоих уравнений и приравнять к сумме правых частей:
(5х - 4у) + (7х + 4у) = 22 + 2, 5х - 4у + 7х + 4у = 24 - как видим -4у и +4у сокращаются, так как их сумма равна 0 и получаем упрощенное уравнение, 5х + 7х = 24, 12х = 24, х = 2, теперь из любого из уравнений выделяем у: если из 1 ур-ия: у = (5х - 22) : 4 = (5*2 - 22) : 4 = -3, или если из 2 ур-ия: у = (2 - 7х) : 4 = (2 - 7*2) : 4 = -3 (как видим результат у одинаков).
-12-8х<7x+12. 1. переносим числа с "х"-сами в левую сторону, а обычные числа в правую: -8х - 7х < 12+12. ( числа переносятся с противоположными знаками, если не знала) 2. Теперь все складываем: -15х< 24. 3. теперь умножим на -1( для того, что бы знак минуса перед "х" ушел), при умножении на отрицательное число все знаки меняются на противоположные, включая знак неравенства. т.е: 15х > -24. 4. Сократим обе части на 15( поделим тобишь): 15х :15 >24 :15 х>1,6. все. если нужно методом интервалов, то просто начерти прямую, отметь на ней точку 1,6( выколотая) и заштрихуй сторону прямой, идущей после числа, и промежуток получится такой: (1,6 ;+∞)
arcctg(-2)=b,b-2 четверть
сos(a/2-2b)=cos(a/2)cos(2b)+sin(a/2)sin2b)
cos²(a/2)=(1+cosa)/2=(1+3/5)/2=8/10=4/5
cos(a/2)=2/√5
cos(2b)=2cos²b-1
ctgb=-2⇒tgb=-1/2
cos²b=1:(1+tg²b)=1:(1+1/4)=1:5/4=4/5
cosb=-2/√5
cos2b=8/5-1=3/5
sin²(a/2)=)1-cosa)/2=(1-3/5)/2=2/10=1/5
sin(a/2)=1/√5
sin2b=2sinbcosb=2√(1-cos²b)*cosb=2*√(1-4/5)*(-2/√5)=
=2*1/√5*(-2/√5)=-4/5
cos(a/2-2b)=2/√5*3/5-4/5√5=6/5√5-4/5√5=2/5√5=2/5√5=2√5/25