Можно ли на трех полках расставить книги так, что на первой полке было в 2 раза больше книг, чем на второй, а на третьей на 7 книг меньше, чем на первой, если всего книг 44.
чертим систему координат, ставим стрелки в положительных направлениях (вверх и вправо), подписываем оси вправо х, вверх - у, отмечаем начало координат - точку О, отмечаем по каждой оси единичный отрезок в 1 клеточку.
Переходим к графикам: у=√х - кривая, проходящая через начало координат - точку О, заполним таблицу: х= 0 1 4 1/4 у= 0 1 2 1/2 Отмечаем точки на плоскости Проводим линию через начало координат и точки , подписываем график у=√х
у=2-х - прямая, для построения нужны две точки, запишем их в таблицу: х= 0 4 у= 2 -2 Отмечаем точки (0;2) и (4;-2) в системе координат и проводим через них прямую линию. Подписываем график у=2-х
Смотрим на точку пересечения двух данных прямых, отмечаем точку М, ищем её координаты, записываем М(1; 1) Всё!
Решение: Зная формулу площади трапеции S=(a+b)/2*h, где а и в -основания трапеции, h-высота трапеции. В данном случае, чтобы найти площадь трапеции необходимо найти высоту трапеции h Если мы опустим перпендикуляр (т.е. высоту) на нижнее основание, мы получим прямоугольный треугольник с гипотенузой (это боковая сторона трапеции), равной 15 см и катет, равный другой боковой стороне 9 см. По теореме Пифагора находим второй катет прямоугольного треугольника (высоту h) Он равен: h=sqrt(15^2 -9^2)=sqrt144=12 Находим площадь трапеции: (9+18)/2*12=162 (см^2)
2х на первой
2х-7 на третьей
х+2х+2х-7=44
5х=51
целого решения нет, значит нельзя