В решении.
Объяснение:
Выберите систему уравнений, соответствующую условию задачи: расстояние от поселка до города 62 км;
велосипедист и мотоциклист, выехав одновременно навстречу друг другу, встречаются через час.
Найдите скорость велосипедиста и мотоциклиста, если скорость велосипедиста на 28 км/ч меньше, чем скорость мотоциклиста.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость велосипедиста.
у - скорость мотоциклиста.
1) х + у = 62
у - х = 28
х = 62 - у
у - 62 + у = 28
2у = 90
у = 45 (км/час) - скорость мотоциклиста.
45 - 28 = 17 (км/час) - скорость велосипедиста.
Второй вариант:
х - скорость мотоциклиста.
у - скорость велосипедиста.
4) х + у = 62
х - у = 28
х = 62 - у
62 - у - у = 28
-2у = 28 - 62
-2у = -34
у = -34/-2
у = 17 (км/час) - скорость велосипедиста.
х = 62 - 17
х = 45 (км/час) - скорость мотоциклиста.
Можно использовать две системы на выбор, в зависимости от обозначений. ответ не изменится.
1) х+у=62
у-х=28
2) х+у=28
х-у=62
3) х+у=28
у-х=62
4) х+у=62
х-у=28
точно не знаю, но 4 вроде так
Воспользуемся теоремой Виета, которая гласит, что в квадратном уравнении вида х^2 + bх + с = 0 действует следующее правило: х1+х2=-b (в данном случае b1=-7) х1*х2=с (в данном случае с1=-1) Решение: новое уравнение будет выглядеть так: х^2 + (b2)*х + с2 = 0 найдём b2 и с2: По теореме Виета: Во-первых: 5*х1 + 5*х2 = -b2 = = 5*(х1+х2) = -5*b1 = -5*(-7) = 35 = -b2 следовательно b2= -35 во-вторых: (5*х1)*(5*х2)=с2 25*(х1*х2) = с2 25*с1 = с2 = 25*(-1) = -25 Подставляем в новое уравнение найденные b2 и с2: ответ: х^2-35х-25=0
будет это несложно