Один экскаватор вырывает котлован на 10 дней быстрее другого. за сколько дней вырывает котлован каждый из экскаваторов, если, работая вместе, они вырывают котлован за 12 дней.
Решение: Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней Производительность работы первого экскаватора за один день равна: 1/х второго экскаватора 1/(х-10) А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение: 1 : [1/(х)+1/(х-10)]=12 1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12 -здесь мы привели к общему знаменателю 1: [(х-10+х)/(х²-10х)]=12 (х²-10х)/(2х-10)=12 х²-10х=12*(2х-10) х²-10х=24х-120 х²-10х-24х+120+0 х²-34х+120=0 х1,2=(34+-D)/2*1 D=√(34²-4*1*120)=√(1156-480)=√676=26 х1,2=(34+-26)/2 х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован х2=(34-26)/2=4 - не соответствует условию задачи Второй экскаватор вырывает котлован за (х-10) или: 30-10=20 (дней)
ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней
Очевидно, задача сводится к тому, чтобы доказать, что при любых а выражение а³-а разделится на 2 и на 3
1. а³ - а = а × а × а - а если а - четное, то а³ - а тоже четное если а - нечетное, то а³ - нечетное. Если из любого нечетного вычесть нечетное, то результат будет четным. Действительно: пусть х - четное и у - четное. Тогда х + 1 - нечетное и у + 1 - нечетное. (х + 1) - (у + 1) = х + 1 - у - 1 = х - у - четное по определению Таким образом, а³ - а - делится на 2 при любых а.
2. а³ - а = а(а² -1) = а(а - 1)(а + 1) - при любом а данное произведение является произведением трех последовательных чисел (а -1) ; а ; (а + 1) Из любых трех последовательных чисел одно всегда разделится на 3, следовательно и все произведение этих чисел разделится на 3
Таким образом, мы доказали, что выражение а³ - а делится на 2 и на 3. Следовательно оно разделится на 6
Примем всю работу за 1. пусть первый делает всю работу за х минут, тогда второй делает всю работу за х-5 минут первый за 1 минуту делает 1/х часть работы второй за 1 минуту делает 1/(х-5) часть работы вместе за 1 минуту делают 1/х + 1/(х-5)=(2х-5)/(х²-5х) часть работы всю работу вместе делают за 18 м 40 с=56/3 минут Значит: (2х-5)/(х²-5х)=1:56/3=3/56 56(2х-5)=3(х²-5х) 3х²-15х=112х-280 3х²-127х+280=0 решая,находим: х1=7/3 х2=40 корень х1=7/3 не подходит по условию задачи Первый делают всю работу за 40 минут, второй за 40-5=35 минут
Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней
Производительность работы первого экскаватора за один день равна:
1/х
второго экскаватора 1/(х-10)
А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение:
1 : [1/(х)+1/(х-10)]=12
1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12 -здесь мы привели к общему знаменателю
1: [(х-10+х)/(х²-10х)]=12
(х²-10х)/(2х-10)=12
х²-10х=12*(2х-10)
х²-10х=24х-120
х²-10х-24х+120+0
х²-34х+120=0
х1,2=(34+-D)/2*1
D=√(34²-4*1*120)=√(1156-480)=√676=26
х1,2=(34+-26)/2
х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован
х2=(34-26)/2=4 - не соответствует условию задачи
Второй экскаватор вырывает котлован за (х-10) или:
30-10=20 (дней)
ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней