М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
NastushaJol
NastushaJol
20.01.2020 03:47 •  Алгебра

Представьте в виде произведения: (х – 2)^2 – 36х^2= c^2 – d^2 – 7d – 7c=

👇
Ответ:
LolGameHD
LolGameHD
20.01.2020
( x - 2)² - 36x² = ( x - 2 - 6x)( x - 2 + 6x) = ( -5x - 2)( 7x - 2)
c² - d² - 7d - 7c = ( c² - d²) - 7( d + c) = ( c -d)( c + d) - 7( c + d) = ( c + d)( c - d - 7)
4,6(17 оценок)
Открыть все ответы
Ответ:
Находим производную функции у=4х³+8х²−15х+15.
y' = 12x²+16x-15.
Производная функции y' существует при любом x.
Приравниваем нулю и находим критические точки.
12x²+16x-15 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=16^2-4*12*(-15)=256-4*12*(-15)=256-48*(-15)=256-(-48*15)=256-(-720)=256+720=976;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√976-16)/(2*12)=(√976-16)/24=√976/24-16/24=4√61/24-(2/3) = √61/6-(2/3) ≈ 0,635042;  x₂=(-√976-16)/(2*12)=(-√976-16)/24=-√976/24-16/24=-4√61/24-(2/3) = 
-√61/6-(2/3) ≈ -1,968375.Получили 2 критические точки: x₁ = √61/6-(2/3) ≈ 0,635042;  
                                                x₂ = -√61/6-(2/3) ≈ -1,968375.
Теперь определяем знаки производной вблизи критических точек.
х =   -2    -1,96838      -1.5      0.5      0,635042        1
у' =   1          0            -12       -4              0             13
В точке x₂ производная меняет знак с + на -  это точка максимума функции,
в точке x₁ производная меняет знак с - на +  это точка минимума функции.
Значения функции в точках экстремума равны:
у(макс) = (1/27)(739 + 61√61) ≈  45,01575.
у(мин)   = (1/27)(739 - 61√61) ≈  9,724991.

ответ: 27-кратная сумма значений в точках экстремума функции равна 
27((1/27)(739 + 61√61) + (1/27)(739 - 61√61)) = 1478.
4,4(44 оценок)
Ответ:
ира1031
ира1031
20.01.2020
Представим выражение в виде |y| + |y - 3x| + |y - (1 - x)|.
Геометрический смысл модуля: |a - b| — расстояние между точками a и b на числовой прямой.

Пусть x — такой, при котором достигается минимум. Обозначим x1 <= x2 <= x3 — значения 0, 3x, 1 - x  в порядке возрастания. Необходимо найти такой y, что сумма расстояний до трёх точек x1, x2, x3 минимальна. Я утверждаю, что минимум будет достигнут, если y = x2.

Действительно, пусть y > x3 >= x2. Сдвинем точку немного влево. Все расстояния уменьшатся, тогда сумма тоже уменьшится. Продолжаем двигать, пока y не сравняется с x3.

Если x3 >= y > x2, тоже сдвинем точку немного левее. Сумма расстояний до точек x2 и x3 постоянна и равна x3 - x2, а расстояние до x1 уменьшится. Продолжаем двигать, пока y не сравняется с x2.

Рассуждая точно так же о движении справа от x2, получаем, что в точке x2 достигается минимум, причём этот минимум равен x3 - x1.

Итак, нам удалось избавиться от y. Нужно решать такую задачу:
Найти минимум выражения f(x) = max(0, 3x, 1 - x) - min(0, 3x, 1 - x).

Перебираем случаи. 

1) 3x — максимум. Тогда 3x >= 0, 3x >= 1 - x.
Первое неравенство: x >= 0
Второе неравенство: 4x >= 1; x >= 1/4.
Итог: так будет при x >= 1/4.
а) 0 — минимум. 0 <= 1 - x, x <= 1. Так будет при x из отрезка [1/4, 1].
f(x) = 3x - 0 = 3x — возрастающая функция, минимум достигается в левом конце отрезка. min = f(1/4) = 3 * 1/4 = 3/4
б) 1 - x — минимум. Так будет при x >= 1.
f(x) = 3x - (1 - x) = 4x - 1 — возрастает, минимум достигается в x = 1, min = f(1) = 3.

2) 1 - x — максимум. (1 - x >= 3x, 1 - x >= 0. Тогда x <= 1/4)
а) 0 — минимум (0 <= 3x, всё это выполнено, если x в отрезке [0, 1/4])
f(x) = 1 - x - 0 = 1 - x — убывающая функция, минимум в правом конце отрезка.
min = f(1/4) = 1 - 1/4 = 3/4.
б) 3x — минимум (x <= 0).
f(x) = 1 - x - 3x = 1 - 4x — убывающая функция, минимум в правом конце отрезка.
min = f(0) = 1.

3) 0 — максимум. Ничего интересного не будет, два случая выше уже покрыли все возможные x.

Выбираем из четырёх значений наименьшее, это 3/4.

ответ. 3/4
Найдите наименьшее значение выражения |y|+|3x−y|+|x+y−1|, где х и у - произвольные действительные чи
Найдите наименьшее значение выражения |y|+|3x−y|+|x+y−1|, где х и у - произвольные действительные чи
4,7(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ