ответ:1)Алгебраической называют дробью.
2)Тождество — это уравнение, которое удовлетворяется тождественно
3)число n (показывающее сколько раз повторяется множитель) – показателем степени
4)Квадратное уравнение называют приведенным, если его старший коэффициент равен 1.
5)Решить уравнение - значит найти все его корни или установить, что их нет.
6)Деление числителя и знаменателя на их общий делитель, отличный от
единицы, называют сокращением дроби.
7)при умножении ( делении ) числителя и знаменателя на одно и то же выражение ( число) получившаяся дробь = исходной
8)числители перемножаются отдельно
отдельно знаменатели
полученную дробь если это возможно сокращают
пример
2/3* 3/4 = (2*3)/(3*4)=6/12=1/2 (произвели сокращение на 6
9)Вам известно, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число.
10) Сложение и вычитание алгебраических дробей c одинаковыми
знаменателями выполняется по тому же правилу, что и с обыкновенными
дробями:
аd + bd – cd = a+b−cd .
11) Нам известно, что дробь 34 равна частному 3 : 4 ,
значит, выражение ( 14+ 15) : ( 13− 16) = ( 14+ 15)( 13− 16) .
Частное двух чисел или выражений, в котором знак деления
обозначен чертой, называют дробным выражением.
Найдем значения выражений:
а) ( 14+ 15)( 13− 16) = ( 520+ 420)( 26− 16) = ( 920)( 16) = 920 : 16 =
= 920• 61 = 5420 = 2 710 = 2,7
12)Пусть a0 и a1 - натуральные числа. Для нахождения их наибольшего общего делителя используется алгоритм Евклида [1] последовательного деления с остатком: a0=a0a1+a2, a1=a1a2+a3, a2=a2a3+a4, … ,где натуральные числа a0,a1,a2, … суть неполные частные. Это алгоритм разложения числа a =a0/a1 в правильную цепную дробь, и он применим к любым вещественным числам a. При этомa0=[a], где [a] - целая часть числа a, a1=[1/(a-a0)], … , т.е.
a=a0+ 1a1+ 1a2+ 1a3+ ···,
13)http://school.xvatit.com/images/9/92/11-06-34.jpg
14)Складываются показатели степеней при УМНОЖЕНИИ степеней с одинаковыми основаниями.
2^3+2^5=8+32=40.
Подробнее - на -
Объяснение:
Дозаправка нужна.
Объяснение:
Плановый рейс транспортного вертолета из аэропорта А в аэропорт Б составляет 600 км с определенной скоростью за некоторое время. В топливных баках вертолета 12000 л топлива, а его расход составляет 3100 кг/ч. Из-за погодных условий вертолет летел со скоростью на 10 км/ч меньше запланированной и затратил на 0,1 ч больше, чем было запланировано. Нужно ли дозаправить вертолет на обратный путь, если он будет лететь с той же скоростью, с которой летел из аэропорта А в аэропорт Б.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - обычная скорость вертолёта.
х-10 - пониженная скорость вертолёта.
600/х - обычное время полёта.
600/(х-10) - время полёта с пониженной скоростью.
По условию задачи разница 0,1 часа, уравнение:
600/(х-10)-600/х=0,1
Общий знаменатель х(х-10), надписываем над числителями дополнительные множители, избавляемся от дроби:
600*х-600*(х-10)=0,1*х(х-10)
600х-600х+6000=0,1х²-х
-0,1х²+х+6000=0/-1
0,1х²-х-6000=0, квадратное уравнение, ищем корни:
D=b²-4ac = 1+2400=2401 √D= 49
х₁=(-b-√D)/2a
х₁=(1-49)/0,2= -240, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(1+49)/0,2
х₂=50/0,2
х₂=250 (км/час) - обычная скорость вертолёта.
250-10=240 (км/час) - пониженная скорость вертолёта.
600/250=2,4 (часа) - обычное время полёта.
600/240=2,5 (часа) - время полёта с пониженной скоростью.
Расход топлива при обычной скорости 3100*2,4=7440 (кг).
Расход топлива при пониженной скорости 3100*2,5=7750 (кг).
Как видно, дозаправка нужна в любом случае, так как в баках 12000 л топлива, а расходуется на путь в одну сторону при обычной скорости 7440 кг, а при пониженной 7750 кг.