Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
Объяснение:
1) cos²x + 0,1cosx = 0
нужно для удобства вынести cos²x за скобки:
cos²x( 1 + 0,1) = 0
1,1 * cos²x = 0
мы можем просто поделить левую и правую часть на одно и тоже число, например на 1,1 , дабы избавиться от этого бесполезного числа :)
1,1 / 1,1 это 1 ; а 0 / 1,1 это 0:
cos²x = 0 /// с квадратом также
и получаем:
cos x = 0
косинус x равен нулю только в точке:
x= π/2 + πn , где n€ Z
2) sin тут не совсем понятно, объясните в комментариях к этой записи, что именно тут написано sin x или вы хотели sin²x?
a^2+b^2+c^2-2bc+3 = a²+3+ (b+c)²
сумма квадратов это число положительное, и оно остается положительным, если прибавить 3
номер 2
m^3-m^2n-mn^2+n^3=m(m²-n²) -n(m²-n²)=(m-n)²(m+n)
номер 3
(a^4+b^4)(a^2+b^2)(a+b)(a-b)=(a^4+b^4)(a²+b²)(a²-b²)=(a^4+b^4)(a^4-b^4)=a^8-b^8
номер 4
1)a^4-b^4= (a²-b²)(a²+b²)=(a-b)(a+b)(a²+b²)
2)a^8-b^8=(a^4+b^4)(a^2+b^2)(a+b)(a-b