Возьмём всю работу = 1 1 экскаватор , работая один, выполнит всю работу за (х + 10) дней 2 экскаватор, работая один, выполнит всю работу за х дней в день 1 экскаватор делает 1/(х + 10) всей работы в день 2 экскаватор делает 1/х всей работы в день оба , работая вместе , делают 1/12 всей работы 1/(х + 10) + 1/ х = 1/12 |· 12х(х + 10) 12 х + 12( х + 10) = х(х + 10) 12 х + 12х +120 = х² + 10 х х²- 14 х - 120 = 0 по т. виета х1 = 20 и х2 = 6
Нет, не правильно. Хотя ответ верный. Это задача на размещение без повторений, т.е. при данном размещении 1 человек не может в одной и той же комбинации занять 2 места сразу. (То, что Вы написали P₄=4! - в размещении используется только тогда, когда число размещений равно числу объектов - формула А₄⁴=P₄=4!), фоа здесь используем формулу размещения: А³₄=4!/(4-3)!=4!/1!=4*3*2=24 4*3*2 - означает, что в каждой комбинации 1-ый человек может выбрать любое из 4-х мест, 2-ой - любое из 3-х оставшихся, 3-й - любое из 2-х оставшихся
Возводим обе части уравнения в куб
83-7х=125
-7х=125-83
-7х= 42
х=-6
ответ. х=-6