Х км/ч - скорость лодки при движении по озеру (х - 2) - скорость лодки против течения 6/(х - 2) - время движения против течения 15/х - время движения по озеру Уравнение 15/х - 6/(х - 2) = 1 15*(х - 2) - 6х = х * (х - 2) при х ≠ 2 15х - 30 - 6х = х² - 2х х² - 11х + 30 = 0 D = b² - 4ac D = 121 - 120 = 1 x₁ = (11 - 1)/2 = 5 км/ч x₂ = (11 + 1)/2 = 6 км/ч
Проверка х = 5 км/ч 15/5 - 6/3 = 1 1 = 1 Проверка х = 6 км/ч 15/6 - 6/4 = 1 5/2 - 3/2 = 1 2/2 = 1 1 = 1 ответ: 5 км/ч или 6 км/ч подходят оба решения
Х км/ч - скорость лодки при движении по озеру (х - 2) - скорость лодки против течения 6/(х - 2) - время движения против течения 15/х - время движения по озеру Уравнение 15/х - 6/(х - 2) = 1 15*(х - 2) - 6х = х * (х - 2) при х ≠ 2 15х - 30 - 6х = х² - 2х х² - 11х + 30 = 0 D = b² - 4ac D = 121 - 120 = 1 x₁ = (11 - 1)/2 = 5 км/ч x₂ = (11 + 1)/2 = 6 км/ч
Проверка х = 5 км/ч 15/5 - 6/3 = 1 1 = 1 Проверка х = 6 км/ч 15/6 - 6/4 = 1 5/2 - 3/2 = 1 2/2 = 1 1 = 1 ответ: 5 км/ч или 6 км/ч подходят оба решения
---
√2*sinα -?
cos²α+sin²α =1;
1+tq²α =1/cos²α;
cos²α =1/(1+tq²α) ; в данном примере дано tqα =7⇒cos²α =1/(1+7²) =1/50.
cosα =√1/50 =√(1/25*2)=1/5√2 ,т.к. cosα >0 ,если α∈(0 ; π/2) .
√2*sinα =√2*(cosα *tqα) =√2*(1/5√2) *7 =7/5 =1,4.
* * * tqα =sinα/cosα ⇒sinα =cosα *tqα * * *