24,5 (км/час) - скорость катера в стоячей воде
3,5 (км/час) - скорость течения реки
Объяснение:
х - скорость катера
у - скорость течения
х+у - скорость катера по течению
х-у - скорость катера против течения
По условию задачи по течению катер шёл 3 часа, против течения 4 часа, система уравнений:
х+у=28
(х+у)*3=(х-у)*4
Преобразуем второе уравнение:
(х+у)*3=(х-у)*4=
=3х+3у=4х-4у=
=3х-4х+3у+4у=
= -х+7у
В первом уравнении выразим х через у и полученное выражение подставим во новое второе уравнение:
х=(28-у)
- (28-у)+7у
-28+у+7у
8у=28
у=3,5 (км/час) - скорость течения реки
х=28-3,5=24,5 (км/час) - скорость катера в стоячей воде
Проверка:
(24,5+3,5)*3= 84 (км) проплыл катер по течению
(24,5-3,5)*4= 84 (км) - проплыл катер против течения (обратно). Всё верно.
24,5 (км/час) - скорость катера в стоячей воде
3,5 (км/час) - скорость течения реки
Объяснение:
х - скорость катера
у - скорость течения
х+у - скорость катера по течению
х-у - скорость катера против течения
По условию задачи по течению катер шёл 3 часа, против течения 4 часа, система уравнений:
х+у=28
(х+у)*3=(х-у)*4
Преобразуем второе уравнение:
(х+у)*3=(х-у)*4=
=3х+3у=4х-4у=
=3х-4х+3у+4у=
= -х+7у
В первом уравнении выразим х через у и полученное выражение подставим во новое второе уравнение:
х=(28-у)
- (28-у)+7у
-28+у+7у
8у=28
у=3,5 (км/час) - скорость течения реки
х=28-3,5=24,5 (км/час) - скорость катера в стоячей воде
Проверка:
(24,5+3,5)*3= 84 (км) проплыл катер по течению
(24,5-3,5)*4= 84 (км) - проплыл катер против течения (обратно). Всё верно.
cosx<0⇒x∈(π/2+2πn;3π/2+2πn,n∈z)
cosx≠-1⇒x≠π+2πn
x∈(π/2+2πn;π+2πn) U (π+2πn;3π/2+2πn)
1-sinx=cos²x
1-sinx=1-sin²x
(1-sinx)(1+sinx)-(1-sinx)=0
(1-sinx)(1+sinx-1)=0
sinx=1⇒x=π/2+2πn,n∈z- не удов усл
sinx=0⇒x=πn,n∈z