2014, 2015
2017, 2018,2019, 2020.
Рассмотрим произвольное число A в котором n цифр. Очевидно, что
Поскольку в числе 10^k ровно k+1 цифра, можно утверждать что:
В числе A^2 количество цифр от 2n-1 до 2n включительно
В числе A^3 количество цифр от 3n-2 до 3n включительно
Суммарное число цифр, таким образом, лежит в пределах
от 5n-3 до 5n включительно. То есть, остатки от деления суммарного числа цифр на 5 могут быть только 2,3,4 и 0
Подходят: 2014, 2015
2017, 2018,2019, 2020.
Объяснение:
Рассмотрим произвольное число A в котором n цифр. Очевидно, что
Поскольку в числе 10^k ровно k+1 цифра, можно утверждать что:
В числе A^2 количество цифр от 2n-1 до 2n включительно
В числе A^3 количество цифр от 3n-2 до 3n включительно
Суммарное число цифр, таким образом, лежит в пределах
от 5n-3 до 5n включительно. То есть, остатки от деления суммарного числа цифр на 5 могут быть только 2,3,4 и 0
Для того, чтобы выполнить упрощение выражений а) 2x - 3y - 11x + 8y; б) 5(2a + 1) - 3; в) 14x - (x - 1) + (2x + 6) мы с вами к каждому из заданных выражений применим алгоритм его упрощения.
Давайте вспомним алгоритм действий:
1. открытие скобок; 2. группировка и приведение подобных слагаемых.
В первом выражение нет скобок и мы переходим к приведению подобных сразу:
а) 2x - 3y - 11x + 8y = 2x - 11x + 8y - 3y = -9x + 5y;
б) 5(2a + 1) - 3 = 5 * 2a + 5 * 1 - 3 = 10a + 5 - 3 = 10a + 2;
в) 14x - (x - 1) + (2x + 6) = 14x - x + 1 + 2x + 6 = 14x - x + 2x + 1 + 6 = 15x + 7.
Объяснение:
.
=(х³-у³)-3ху(х-у)=(х-у)(х²+ху+у²)-3ху(х-у)=(х-у)(х²+ху+у²-3ху)=
=(х-у)(х²-2ху+у²)=(х-у)(х-у)²=(х-у)³=(-18-(-28))³=(-18+28)³=10³=1 000