Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).
Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +. Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
7/12с и 11/8с Общий знаменатель - это НОК ( наименьшее общее кратное ) выражений 12с и 8с. Для нахождения НОК надо разложить на множители 12с и 8с: 12с=2²·3·с 8с=2³·с НОК=произведению множителей обоих выражений в старших степенях: НОК(12с,8с)=2³·3·с=24с . Чтобы найти дополнительные множители для дробей, если их складывают или вычитают, надо общий знаменатель разделить на знаменатель дроби, к которой находят дополнительный множитель. К 1 дроби дополнительный множитель = 24с:12с=2. Ко 2 дроби дополнительный множитель = 24с:8с=3.
AC² = DA² + DC²-2*DA*DC* cosD = 50+16-2*20√2*(-√2/2)=106, AC = √106.
Применяем теорему косинусов.