М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nestann
nestann
02.04.2021 06:46 •  Алгебра

Поставить знак > или < примеры

👇
Ответ:
hetty
hetty
02.04.2021
23 < 54
91 > 12
4,8(22 оценок)
Открыть все ответы
Ответ:
windi37
windi37
02.04.2021

Теорема о медианах треугольника

Рассмотрим произвольный треугольник АВС.

teorema_o_medianah_treugolnikama – медиана треугольника, проведенная к стороне BC

mb – медиана треугольника, проведенная к стороне AC

mc– медиана треугольника, проведенная к стороне AB

O – центр пересечения медиан треугольника

A, B, C – вершины треугольника

 

 

Теорема о медианах треугольника формулируется следующим образом: медианы треугольника пересекаются в одной точке (на рисунке точка O) и делятся этой точкой в пропорции 2:1, если считать от вершины, с которой проведена медиана.

Все формулы по теме теорема о медианах треугольника:

Основные формулы

Формулы площадей

Формулы объемов

Формулы периметра

Геометрические фигуры

Объемные тела

Площадь поверхности

Тригонометрические формулы

Теоремы по геометрии

Теорема Пифагора

Обратная теорема Пифагора

Теорема косинусов

Теорема синусов

Теорема тангенсов

Теорема о медианах треугольника

Теорема о биссектрисе

Теорема о сумме углов треугольника

Теорема о сумме углов многоугольника

Теорема Чевы

Теорема Виета

Теорема Фалеса

4,5(60 оценок)
Ответ:
nikitossmile1
nikitossmile1
02.04.2021

Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁  до пересечения с этой прямой в точке T.
 Из равенства треугольников  А₁BT и  A А₁C  (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников 
AML  и  MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL,  AT) следует,
что AL : BT = AL : AC = AM : MT. Так как  АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.

решение во вкладыше 

4,8(58 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ