Если бы N было нечетным, то остатки от деления на 2, 4,... тоже были только нечетные. И значит эти остатки должны быть 1, 3, ... 99. Но тогда число N-1 имеет остатки 0,2,...98. То.есть они тоже все разные, а число N-1 меньше N. Т.е. получается, что нечетное N не может быть наименьшим числом с разными остатками. Значит наименьшее такое число должно быть четным.
Если N - четное, то остатки от деления на 2, 4,... тоже только четные. И значит остаток от деления на 2 может быть только 0, остаток от деления на 4 - только 2 (т.к. 0 уже был), от деления на 6 - только 4 (т.к. 0 и 2 уже были) и т.д... Тогда остаток от деления на 100 равен 98. ответ: 98.
1) График функции Y=x^2+2x-3 - это парабола ветвями вверх. Область значень функції - все действительные числа (R).
2) Вершина параболы находится в точке х = -в / 2а = -2 / 2*1 = -1. у = (-1)² +2*(-1) - 3 = 1-2-3 = -4. Точки пересечения графика оси х соответствуют значению у = 0: x² + 2x - 3 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=2^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16; Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√16-2)/(2*1)=(4-2)/2=2/2=1; x₂=(-√16-2)/(2*1)=(-4-2)/2=-6/2=-3. Функція набуває додатних значень при x < -3 и x > 1.
5x+1=t
t^2-3t-4=0
по Виету:
t1+t2=3
t1×t2=-4
t1=-1; t2=4
5x+1=-1
5x=-2
x1=-2/5=-0.4
5x+1=4
5x=5
x2=1
2) (x^2-7)^2-4(x^2-7)-45=0
(x^2-7)=t
t^2-4t-45=0
D=16+180=196=14^2
t1=(4+14)/2=18/2=9
t2=(4-14)/2=-10/2=-5
x^2-7=9
x^2=16
x1,2=+-4
x^2-7=-5
x^2=2
x2,3=+- √2
вроде так)