2)а) х = 1/2. х=1/3, х= 1/4
б) х=-1/2, х =-250
Объяснение:
1)
x³+x²+x+6=0
x³+x²+x²-x²+x+6=0
x³+2x²-(x²-x-6)=0
x²*(x+2)-(x²-x+3x-3x-6)=0
x²*(x+2)-(x²+2x-3x-6)=0
x²*(x+2)-(x*(x+2)-3*(x+2))=0
x²*(x+2)-(x+2)*(x-3)=0
(x+2)*(x²-(x-3))=0
x+2=0
x₁=-2.
x²-x+3=0 D=-11 ⇒ Уравнение не имеет действительных корней.
ответ: х=-2.
2)
x⁴+2x³-3x²-4x+4=0
x²*(x²+2x-3)-4*(x-1)=0
x²*(x²+2x-3x+3x-3)-4*(x-1)=0
x²*(x²-x+3*(x-1))-4*(x-1)=0
x²*(x*(x-1)+3*(x-1))-4*(x-1)=0
x²*(x-1)*(x+3)-4*(x-1)=0
(x-1)*(x²*(x+3)-4)=0
x-1=0
x₁=1.
x³+3x²-4=0
x³+2x²+x²-4=0
x²*(x+2)+(x+2)*(x-2)==
(x+2)*(x²+x-2)=0
x+2=0
x₂=-2.
x²+x-2=0 D=9 √D=3
x₃=-2 x₄=1.
ответ: x₁=1 x₂=-2.
Пусть трехзначное число выглядит как 9xy, где x - цифра, y - цифра.
После перестановки имеем число xy9.
Исходное число, обозначим A, очевидно равно
A = 900 + 90*x + y.
После перестановки число обозначим B, оно равно
B = x*100 + y*10 + 9.
Имеем:
A-B = (900 + 90*x + y) - (x*100 + y*10 + 9) = 891-90*x - 9*y.
Известно, что
A-B = 576.
Имеем:
576 = 891-90*x - 9*y
Или
90*x + 9*y = 315.
Поскольку x и y - цифры, то есть от 0 до 9 включительно, то в числе 315 последний разряд никак не может прийти от первого слагаемого (90*x). Можно перебрать все 10 вариантов значения цифры x - не получится, чтобы 90*x
равнялось числу, оканчивавшемуся на цифру, отличную от нуля.
Следовательно, в числе 315 последний разряд получен только от второго слагаемого (9*y).
Единственной такой цифрой, которая даст при перемножении на 9 результат, оканчивающийся на 5, это число 5.
Тогда
y=5.
90*x + 9*5 = 315.
x = 3.
ответ:
A = 935