Пусть меньшее из этих чисел равно х. Тогда два других равны (х+1) и (х+2). Квадрат меньшего числа равен х², а произведение двух других чисел равно ((х+1)(х+2)). По условию, квадрат меньшего числа на 65 меньше произведения двух других чисел. Составляем уравнение: (х+1)(х+2)-х²=65 х²+х+2х+2-х²=65 3х=65-2 3х=63 х=63:3 х=21 - меньшее число. 21+1=22 - второе число. 22+1=23 - третье число.
1) Обозначим скорости велов v1 и v2, время до встречи t (оно одинаковое у обоих), а расстояния, которые они проехали до встречи S1 и S2. До встречи 1-ый проехал такое расстояние, которое 2-ой проехал за 1,5=3/2 ч. S1=v1*t=v2*3/2 v1/v2=3/(2t) А 2-ой проехал такое, которое 1-ый проехал за 40 мин = 2/3 ч. S2=v2*t=v1*2/3 v1/v2=t:(2/3)=t*3_2=3t/2 Получаем v1/v2=3/(2t)=3t/2 Отсюда, разделив на 3/2: 1/t=t=1 ч. До встречи они оба ехали 1 ч. Отношение скоростей v1/v2=3/2. ответ А) в 1,5 раза. 2) x^2 - 2√(x^2+2x) = 3 - 2x x^2+2x + 2√(x^2+2x) - 3 = 0 Замена y=√(x^2+2x)>0 при любом х, потому что √ арифметический. y^2-2y-3=0 (y-3)(y+1)=0 Подходит только y=3 √(x^2+2x)=3 x^2+2x=9 x^2+2x-9=0 D=4-4*1*(-9)=40=(2√10)^2 x1=(-2-2√10)/2=-1-√10 x2=-1+√10 ответ: Б) -1+-√10
1) Обозначим скорости велов v1 и v2, время до встречи t (оно одинаковое у обоих), а расстояния, которые они проехали до встречи S1 и S2. До встречи 1-ый проехал такое расстояние, которое 2-ой проехал за 1,5=3/2 ч. S1=v1*t=v2*3/2 v1/v2=3/(2t) А 2-ой проехал такое, которое 1-ый проехал за 40 мин = 2/3 ч. S2=v2*t=v1*2/3 v1/v2=t:(2/3)=t*3_2=3t/2 Получаем v1/v2=3/(2t)=3t/2 Отсюда, разделив на 3/2: 1/t=t=1 ч. До встречи они оба ехали 1 ч. Отношение скоростей v1/v2=3/2. ответ А) в 1,5 раза. 2) x^2 - 2√(x^2+2x) = 3 - 2x x^2+2x + 2√(x^2+2x) - 3 = 0 Замена y=√(x^2+2x)>0 при любом х, потому что √ арифметический. y^2-2y-3=0 (y-3)(y+1)=0 Подходит только y=3 √(x^2+2x)=3 x^2+2x=9 x^2+2x-9=0 D=4-4*1*(-9)=40=(2√10)^2 x1=(-2-2√10)/2=-1-√10 x2=-1+√10 ответ: Б) -1+-√10
(х+1)(х+2)-х²=65
х²+х+2х+2-х²=65
3х=65-2
3х=63
х=63:3
х=21 - меньшее число.
21+1=22 - второе число.
22+1=23 - третье число.