М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
f123123
f123123
19.02.2022 21:40 •  Алгебра

Забыл как решить, подскажите cos(x)> 0

👇
Ответ:
Maaaaaria122
Maaaaaria122
19.02.2022
Cos положителен в I и IV четвертях
-π/2 + 2πk < x < π/2 + 2πk , k∈Z
4,6(12 оценок)
Открыть все ответы
Ответ:
закро
закро
19.02.2022
Пример 1. Найти точку максимума функции y=(x-12)^2(x-3)+4

Решение:

1) Вычислим производную функции:
     y'=((x-12)^2(x-3)+4)'=((x-12)^2)'(x-3)+(x-12)^2(x-3)'=\\ \\ =2(x-12)(x-3)+(x-12)^2=(x-12)(2x-6+x-12)=\\ \\ =(x-12)(3x-18)
2) Приравниваем производную функции к нулю:
(x-12)(3x-18)=0
Произведение равно нулю, если один из множителей равен нулю
x-12=0\\ x_1=12\\ 3x-18=0\\ 3x=18\\ x_2=6

___+___(6)___-___(12)____+__
В точке х=6 производная функции меняется знак с (+) на (-), следовательно точка х=6 максимума.

ответ: х=6 - точка максимума

Пример 2. Найти точку минимума функции y=(x+8)^2(5x-32)+11

Решение:

1) Найдем производную данной функции
y'=((x+8)^2(5x-32)+11)'=((x+8)^2)'(5x-32)+(x+8)^2(5x-32)'=\\ \\ =2(x+8)(5x-32)+5(x+8)^2=(x+8)(10x-64+5x+40)=\\ \\ =(x+8)(15x-24)
2) Приравниваем производную функции к нулю
(x+8)(15x-24)=0
Произведение равно нулю, если один из множителей равен нулю
x+8=0\\ x_1=-8\\ \\ 15x-24=0|:3\\ 5x-8=0\\ \\ x=8/5=1.6

___+___(-8)___-__(1.6)__+___
В точке х=1,6 знак производная меняется с (-) на (+), следовательно, точка х = 1,6 - т. минимума

ответ: х=1.6 - точка минимума

Пример 3. Найти наименьшее значение функции y=3x-x \sqrt{x+9} на отрезке [1;7]

Решение:

1) Вычислим производную функции
y'=(3x-x \sqrt{x+9} )'=3-((x)'\sqrt{x+9}+x(\sqrt{x+9})')=\\ \\ =3-\sqrt{x+9}- \dfrac{x}{2\sqrt{x+9}}

2) Приравниваем производную функции к нулю
3-\sqrt{x+9}- \dfrac{x}{2\sqrt{x+9}} =0
Пусть \sqrt{x+9}=t, причем t \geq 0, иx=t^2-9 тогда получаем
3-t- \dfrac{t^2-9}{2t} =0\,\,\, \bigg|\cdot (2t\ne0)\\ \\ \\ 6t-2t^2-t^2+9=0\\ -3t^2+6t+9=0\\ \\ -3(t^2-2t-3)=0\\ t^2-2t-3=0
По т. Виета:
t_1=-1\\ t_2=3
Корень t=-1 не удовлетворяет условию при t≥0

Обратная замена
\sqrt{x+9}=3\\ x+9=9\\ x=0\notin [1;7]

3) Найдем наименьшее значение на концах отрезка
y(1)=3\cdot 1-1\cdot \sqrt{1+9} =3-\sqrt{10} \ \textless \ 0\\ y(7)=3\cdot7-7\cdot\sqrt{7+9} =21-7\cdot4=21-28=-7\,\,\,\,\,-\,\,\,\,\,\,\, \min

ответ: наименьшее значение y(7)=-7
4,6(30 оценок)
Ответ:
Мариам2065
Мариам2065
19.02.2022
Нет.
Дело в том, что вероятность -- это характеристика, которая не зависит от конкретного случая. Например, вероятность того, что монетка упадёт на решку, равна одной второй, но это не значит, что если ты её кинешь десять раз, то ровно пять будут орлы, а ровно пять - решки.

Более формально, существует закон больших чисел:
Пусть провели n экспериментов, из которых m_n оказались успешными. Тогда
\lim\limits_{n \to \infty}{\frac{m_n}{n}} = \mathbb{P}
где \mathbb{P} - вероятность успеха.
Так что никакая конечная выборка экспериментов (бросков) не позволяет нам судить о вероятности.

Возможно, ему просто повезло :)
4,8(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ