Объяснение:
При n=1 верность неравенства очевидна.
При n=2, получаем известное верное неравенство, оно нам понадобится.
Теперь докажем, что из верности неравенство верно для n=m, следует его верность для n=2m.
В самом деле, пусть неравенство верно для n=m. Нам нужно доказать, что тогда верно и неравенство
Так как неравенство верно для n=m (по индуктивному предположению), можем записать такие два неравенства:
Теперь сложим эти неравенства и разделим обе части полученного на 2. Получится вот такое неравенство:
Но использовав неравенство для n=2 получаем:
Тогда и подавно
А теперь, следуя за Коши (который как раз первым доказал это неравенство), заметим, что из доказанного выше следует, что если неравенство верно для (где k - натуральное), то оно верно и для
. Действительно, чтобы доказать это, достаточно положить
, тогда
и неравенство также верно. А так как неравенство верно для n=2, то по индукции отсюда получаем верность неравенства для всех остальных степеней двойки, то есть для чисел вида
при любом натуральном
. Это утверждение назовём Леммой 1.
Осталось доказать, что из верности неравенства для n=k, следует его верность для n=k-1. Это будет наша Лемма 2.
Ну что же, раз в задании дана такая превосходная подсказка - воспользуемся ей. Найдём такой x, о котором идёт речь в задании. Он выражается из данной в условии формулы очевидным образом, не буду на этом останавливаться:
Теперь пусть неравенство верно для произвольного n=k.
Применим это неравенство к числам :
Что получится в левой части мы знаем - среднее арифметическое чисел . Далее возводим неравенство в степень k и преобразовываем:
Получили как раз неравенство для n=k-1.
Собственно, неравенство можно считать доказанным. Лемма 1 и Лемма 2 решают вопрос для любого n. В самом деле, возьмём произвольное натуральное n. Очевидно, найдётся такое натуральное , что
. Неравенство верно для этой степени двойки (Лемма 1). Но оно верно также и для всех натуральных чисел меньших её, это по индукции следует из Леммы 2. Тогда неравенство верно и для нашего произвольно выбранного n.
Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.