Объяснение:
1) f(x)=2e^x+3x² f'(x)=2e^x+6x
2) f(x)= x sinx. f'(x)= sinx+xcosx
3) у = (3х – 1)(2 – х) y'=3(2 – х)+(3х – 1)×(-1)=6-3x-3x+1=-6x+7
4) y=9x²-cosx y'= 18x+sinx
5) y=e^x-x^7 y'= e^x-7x^6
7) f '(1), f(x)=3x2-2x+1. f'(x)=6x-2; f'(1)=6-2=4
8) у = х²(3х^5 – 2) ; х0 = – 1. у' =(3x^7-2x²)'=21x^6-4x
y'(-1)=21+4=25
9) f '( ), f(x)=(2x-1)cosx=2cosx-(2x-1)sinx
10) f '(1), f(x)=(3-x²)(x²+6)= -2x(x²+6)+2x(3-x²) = -4x³ -6x
11) f '(1), f(x)=(x^4-3)(x²+2), f'(x)=3x³ (x²+2)+2x(x^4-3)=5x^5+6x³-6x
2) ( c + d)( c² - cd + d²)
3) ( x + 3)( x² - 3x + 9)
4) ( a - 3)( a² + 3a + 9)
5) ( n - 4)(n² + 4n + 16)
7) ( 1 - p)( 1 + p + p²)
8) ( 5 - b)( 25 + 5b + b²)
9)( 3m - 2)(9m² + 6m + 4)
10) ( 4 - 5y)( 16 + 20y + 25y²)
11) ( 5 + 1/2b)(25 - 5/2b + 1/4b²)
12) ( 4y + 1/3)( 16y² - 4/3y + 1/9)