Дано:
V₀=24м/с
Найти: h; t
1) Скорость - это производная от расстояния.
V = h'
V = ( 24t − 5t²)'
V = 24 - 10t
Получили формулу, которая показывает зависимость скорости V
(в м/с) от времени полета t .
2) V = 24 - 10t
V - конечная скорость, которая в момент достижения мячом наибольшей высоты равна 0.
Решим уравнение и найдем время t.
0 = 24 - 10t
10t = 24
t = 24:10
t = 2,4
t=2,4 с - время полёта мяча снизу до наибольшей высоты.
3) Находим значение наибольшей высоты, на которую поднимется мяч за t=2,4c.
h=24t-5t² при t=2,4c.
h = 24·2,4 - 5·2,4² = 2,4·(24-5·2.4) = 2,4·(24-12) = 2,4·12= 28,8 м
4) Найдем tₓ все время полета от броска с земли до момента падения его на землю
tₓ = 2t = 2 · 2,4 = 4,8c
ответ: 28,8 м; 4,8c
1) Из свойство логарифма получаем следующую систему:
2y-x=(y-x)^3 одз: 2y-x>0 ; y-x>0
x^2+y^2=1
2y-x=(y-x)*(y-x)^2
2y-x=(y-x)*(x^2-2*xy+y^2)
2y-x=(y-x)*(1-2*xy)
(y-x)*(1-2xy) -(y-x) -y=0
(y-x)*(-2*xy) -y=0
y*( (y-x)*(-2x) -1)=0
y*(2x^2-2*xy-1)=0
1) y=0
x=+-1 ( 1 не удовлетворяет одз)
y=0
x=-1
2) 2x^2-2*xy-1=0
2*x^2-2*xy-(x^2+y^2)=0
x^2-2*xy-y^2=0
Заметим что x≠0
тк в этом случае x=y=0 ,что несовместимо с условием x^2+y^2=1.
тогда можно поделить на x^2.
1-2*(y/x)-(y/x)^2=0
y/x=r
1-2*r-r^2=0
r^2+2r-1=0
r^2+2r+1=2
(t+1)^2=2
r=-1+-√2 t=1/r=x/y
t= 1+-√2 (r*t=(+-√2+1)*(+-√2-1)=1)
x/y=1+-√2
x=y*(1+-√2)
y^2+y^2*(1+-√2)^2=1
y^2*(1+(1+-√2)^2)=1
y^2= 1/(1+(1+-√2)^2)
1+(1+-√2)^2=1+1+2+-2*√2= 4+-2*√2
y^2= 1/(4+-2√2)=(4-+2*√2)/(16-8)=4+-2√2/4 = (2+-√2)/2
y=+-√(2+-√2)/2)
x^2=1- (2+-√2)/2=(2-2-+√2)/2= -+√2/2
x^2=1/√2
x=1/ <1
Вот тут придется проверить область определения :
y>1/
тк x-положительно то 2 условие уже выполняется автоматически
таким образом для y возможно :
y=√(2+√2)/2) подходит тк>1
Cравним:
√2/2 >(2-√2)/2
значит этот вариант не подходит
ответ: x1=1/ ; y1=√(2+√2)/2) ;x2=-1;y2=0
-100·0.01²=-100·0,0001= - 0,01