М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
валера4711009
валера4711009
21.12.2022 05:59 •  Алгебра

Петя задумал число и прибавил к нему 5. результат умножил на 7. потом вычел удвоенное задуманное число. потом вычел задуманное число. какое число получил петя?

👇
Ответ:
azko
azko
21.12.2022
(x+5)*7 - 2x - x=7x+35 - 3x=4x+35=4x= - 35
                                                               x= - 35:4
                                                               x= - 8,75
(-8,75+5)*7 - 2*(-8,75) +8,75= -3,75*7 + 17,5 + 8,75= - 26,25 +26,25=0
4,6(66 оценок)
Открыть все ответы
Ответ:

Все таки не удержусь и для начала покажу красивый без метода мат индукции, а потом уже с методом мат. индукции.

Первый .(собственно то, как, возможно, была выведена эта формула)

Обозначим сумму ряда за S:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+n(n+1)!/2^n = S

Рассмотрим также вс сумму S1:

2!/2 +3!/2^2 + 4!/2^3 +...+(n+1)!/2^n = S1

Тогда не трудно убедится, что

S+2S1 = 3*2!/2 + 4*3!/2^2 + 5*4!/2^3+...+(n+2)(n+1)!/2^n =

= 3!/2 + 4!/2^2+ 5!/2^3+...+(n+2)!/2^n = 2*( 3!/2^2 + 4!/2^3 +...+(n+2)!/2^(n+1) =

= 2(S1 -2!/2 + (n+2)!/2^(n+1))

То есть получаем равенство:

S+2S1 = 2S1 -2! + (n+2)!/2^n

Замечаем, что 2S1 сокращается:

S = (n+2)!/2^n - 2

Что и требовалось доказать.

Второй (метод математической индукции)

Проверим, что тождество верно для n = 1:

1*2!/2 = 3!/2 - 2

1 = 3 - 2 - верно.

Предположим, что утверждение справедливо для n = t, то есть:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t = (t+2)!/2^t - 2

Докажем его справедливость для n = t+1

То есть нужно доказать, что:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t + (t+1)(t+2)!/2^(t+1) = (t+3)!/2^(t+1) - 2

Нетрудно заметить, что:

1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t + (t+1)(t+2)!/2^(t+1) =

= (1*2!/2 + 2*3!/2^2 + 3*4!/2^3+...+t(t+1)!/2^t) + (t+1)(t+2)!/2^(t+1)  =

= (t+2)!/2^t - 2 + (t+1)(t+2)!/2^(t+1) = 2(t+2)!/2^(t+1) + (t+1)(t+2)!/2^(t+1) - 2 =

= (2+t+1)*(t+2)!/2^(t+1) - 2 = (t+3)((t+2)!/2^(t+1) - 2 = (t+3)!/2^(t+1) - 2

А значит, по принципу математической индукции, данное тождество доказано.

4,6(46 оценок)
Ответ:
TigerTanya
TigerTanya
21.12.2022

Можно доказать несколькими По т. Фалеса: Если параллельные прямые отсекают на одной стороне угла равные отрезки, то они отсекают равные отрезки и на второй стороне угла.

Параллельные прямые DE и AC отсекают равные отрезки на стороне AB угла ABC, т.е. AD = DB. Значит на стороне BC они отсекают также равные отрезки BE = EC.

2) Из подобия треугольников. Так как DE ║ AC, то ΔABC подобен ΔDBE по двум углам: ∠B общий, ∠BDE = ∠BAC как соответствующие при DE ║ AC и секущей AB. Так как по условию AD = DB, то BD/AB = 1/2. Коэффициент подобия k = 1/2. ⇒ BE/BC = 1/2, ⇒ BC = 2*BE,  тч. E является серединой отрезка ВС.

3) Проведем прямые BO ║AC и ON║AB.

DBON параллелограмм, так как его противолежащие стороны параллельны. ⇒ DB = EO. ADEN параллелограмм, так как его противолежащие стороны параллельны,  так как AD=DB, то NE=EO.

ΔBEO = ΔNEC по второму признаку: ∠BEO = NEC вертикальные, ∠BOE = ∠ENC внутренние накрест лежащие при BO ║AC и секущей ON. OE = EN. Из равенства треугольников следует BE=EC. ( так доказывается т. Фалеса)


Через середину боковой стороны равнобедренного треугольника проходит прямая, параллельная основанию
4,4(33 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ