Коротко: Наша цель найти k и b, чтобы подставить их в уравнение прямой y = kx + b.
Подробное решение:
Рассмотрим 1ую функцию:Возьмем произвольную точку; пусть это будет точка A(0; 0). Мы видим по графику, что это прямая. Уравнение прямой: y = kx + b (в некоторых учебниках пишут y = kx + m разницы нет вообще (только буква другая) ).
Мы смотрим, какой x у точки A (т.е. на 1ое число после скобки A(x; y) ). Видим, что x = 0. Аналогично и y = 0. Подставим эти значения в формулу. Вместо y (в формуле y = kx + b) идет 0; вместо x тоже 0, но его мы уже подставляем суда: y = kx + b. Получим: 0 = 0 + b. Это простейшее линейное уравнение. Хорошо видно, что b = 0.
Отлично, b нашли. Теперь найдем k. Возьмем любую другую точку, где x не равен 0. Пусть это будет точка B(2; 1). Помнишь как найти x и y этой точки? Правильно: x = 2, y = 1 (т.к. B(x; y) ). Подставим их в уравнение прямой y = kx + b (мы не забываем про b, его мы уже знаем). Получили: 1 = k * 2 + 0. Простое линейное уравнение. Решив его, увидим, что k = 0.5.
Теперь подставим k и b в наше уравнение прямой. Результатом всех наших действий стала формула уравнения прямой 1ой функции. ответ на 1ую задачу: y = 0.5x
Рассмотрим 2ую функцию:Я бы сказал, она самая простая. Y здесь фиксированный и не меняется при изменении x! Поэтому в таких случаях мы просто пишем y = 2. Эта функция всегда дает нам значение 2. Применять алгоритм из 1ого примера ни в коем случае не нужно.
Рассмотрим 3ью функцию:Применим алгоритм из 1ого примера. Возьмем точку A(0; 3). 3 = 0 + b => b = 3. Возьмем точку B(2; 0). 0 = 2 * k + 3 => k = -1.5. Все просто! ответ: y = -1.5k + 3
Раздел долго плана: Школа: Каскабулакская средняя школа
5.3C Множества ФИО учителя: Рашидов Махмуд Исмаилович
Дата: 28.07.2017г.
Класс: 5 Количество присутствующих:15 отсутствующих:
Тема урока
Объединение и пересечение множеств
Цели обучения, которые достигаются на данном уроке (ссылка на учебную программу)
5.4.1.2 знать определения объединения и пересечения множеств;
5.4.1.3 находить объединение и пересечение заданных множеств, записывать результаты, используя символы , ;
Цели урока
Дать определения объединения и пересечения множеств формированию навыков находить объединения и пересечение заданных множеств и записывают результаты используя символы , ;
Критерии успеха
Учащийся достиг цели обучения, если:
1. знает определения объединения и пересечения множеств
2. находит объединение и пересечение заданных множеств. 3.записывает результаты, используя символы , ;
Языковые цели
В ходе урока учащиеся будут оперировать новыми терминами и понятиями, комментировать порядок выполнения действий с множествами
Предметная лексика и терминология:
множества, пересечение и объединение; подмножества, пересекающиеся и непересекающиеся множества, пустое множество, элементы множества.
Точность и ясность словесного выражения мыслей.
Привитие ценностей
Воспитание чувства патриотизма. Формирование и поддержание доверительных межличностных отношений, взаимного уважения, взаимной ответственности. Воспитание цельной и порядочной личности, формирование у учащихся коммуникативных навыков и навыков лидера 21го века.
Межпредметные связи
Знания, полученные в данном разделе, найдут применение в алгебре, геометрии, биологии, истории.
Навыки использования ИКТ
Интерактивная доска, презентация ,интернет, мобильные устройства.
Предварительные
знания
Знает понятия множества и его элементов, пустого множества;
Определяет характер отношений между множествами (пересекающиеся и непересекающиеся множества);
Знаком с понятием подмножества;
Умеет использовать символы , , , , , при работе с множествами;
Ход урока
Запланированные этапы урока
Запланированная деятельность на уроке
Ресурсы
Начало урока
Оргмомент
Позитивный психологический настрой на урок
(3 мин)
Деление на группы с приема «Множества»
(5-мин)
Целеполагание
Постановка цели урока и определение критериев успеха и оценивания.
(5 мин)
Групповая работа
(3 мин)
Середина урока.
Презентация новой темы
(5мин)
Приветствует учеников, проверяет готовность к уроку, желает успеха.
Метод «Дерево достижений»
Педагог. Обратите внимание на наше одинокое дерево. У каждого из вас есть листочки разного цвета. Я по вас взять один из них (любого цвета) и нашему дереву покрыться разноцветной листвой.
Тех, кто выбрал зеленый лист, ожидает успех на сегодняшнем занятии.
Те, кто выбрал
Красный, — желают общаться.
Желтый — проявят активность.
Синий — будут настойчивы.
Помните, что красота дерева зависит от вас, ваших стремлений и ожиданий.
Деление на группы прием «Множества»
Ученики делятся на группы, выбирая разных животных – птицы, млекопитающие, насекомые.
Используя прием деления на группы, учитель наводит на тему урока, задавая наводящие во тем самым актуализирует знания учащихся о множествах.
Что такое множество?
Назовите элементы:
множества «Времена года»
множества «Дни недели»
Что такое подмножество?
Назовите подмножество:
Множества «Растения»
Множества «Спортсмены»
Цели уроки определяются с приема «Проблемная ситуация».
Введение в урок проблемного диалога необходимо для определения учащимися границ знания — незнания. Создание на уроке проблемной ситуации дает возможность учащемуся сформулировать цель занятия.
Учитель показывает ученикам задачу.
Махмуд и Екатерина содержат аквариумных рыбок. Махмуд коллекционирует только меченосцев, а Екатерина- рыбок красного цвета. У детей 8 меченосцев, а красных рыбок-7. Всего у детей-12 рыбок. Возможно ли такое?
Объяснение:
S=0?55*(0?8^4^-1) всё это разделить на 0,8-1=0,558(-0,5904)/ (-0,2)= 1,6236