Из двух городов, расстояние между которыми равно 420 км,одновременно выехали две машины.скорость одной из них на 15км/ч больше, чем у другой. через 4 часа между ними было 40 км. найдите скорость каждой машины. ,
(Краткая запись задачи на изображении, sorry на каляки:)) ) Решение: 1) 420-40=380(км) расстояние которое проехали машины за 4 ч 2)380÷4=95(км/ч) скорость двух машин вместе 3) Пусть I м. = x+15, тогда II м. = х Составим уравнение: х+15+х=952х=95-15 2х=80 х=40 I м. = 40+15=55 км/ч II м. = 40 км/ч
Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
3 sinx + cos x/ sin x + 2 cos x = 7 /5; ⇒ 5*(3sin x + cos x) = 7*(sin x + 2 cos x); 15 sin x + 5 cos x = 7 sin x + 14 cos x; 8 sin x = 9 cos x; tg x = 9/8;
1)3 sin^2 x - 2 sin x cos x + 1 = 3 sin^2 x - 2 sin x cos x + sin^2 x + cos^2 x = 4 sin^2 x - 2 sin x cos x + cos ^2 x. 2) 2 cos^2 x + sin x cos x + 3 = 2 cos^2 x +sin x cos x + +3sin^2 x + 3cos^2 x = 3sin^2 x + sinx cosx + 5cos ^2 x.
Решение:
1) 420-40=380(км) расстояние которое проехали машины за 4 ч
2)380÷4=95(км/ч) скорость двух машин вместе
3) Пусть I м. = x+15, тогда II м. = х
Составим уравнение:
х+15+х=952х=95-15
2х=80
х=40
I м. = 40+15=55 км/ч
II м. = 40 км/ч